Course Syllabus: BIOL 4450/6450: Spring 2020

Theory and Practice of Scanning Electron Microscopy
CRN 24699 and 24711; Lecture: MW 12:00 – 12:50 p.m. (BC 1202),
Lab: MW 1:00 – 2:50 p.m. (BC 1075)

Instructor: Dr. Russ Goddard, BC 2090, 249-2642
email: rgodddard@valdosta.edu Office Hours: MW: M: 3:00 – 4:30 p.m.; W: 10:00 – 11:30 a.m.

Course Catalog Description: BIOL 4450/6450, Theory and practice of scanning electron microscopy,
2-2-4. Prerequisite: BIOL 3200 and 3250 or consent of the instructor (for 6450: admission into the graduate
program). General principles of scanning electron microscopy operation and theory with comparison to light
and TEM optics in a laboratory intensive environment. Topics include fixation and preparation of biological
samples for standard, low voltage, variable pressure, and high resolution SEM.

Electronic Key Access: Due to the laboratory intensive nature of this course and the fact that there is only one
microscope and each student must use this microscope independently to pass this course, students will need to
request OneCard access to the building and to BC 1075. This form is located on the “Key and Electronic
Access” page on the VSU website at https://www.valdosta.edu/administration/finance-admin/plant-ops/access-control/.
After accessing this page each student should read and adhere to the key shop policies on use of this privilege
then click on the “Card access” tab on the right side of the page. Fill in the required fields, note you need
access to the Bailey Science Center through the Georgia Avenue side door on nights, weekends, and holidays
through the semester, and that you need access to BC 1075. Finally, the department head’s email that must be
entered is rlgannon@valdosta.edu. Submit the form, find your PIN code on BANNER and then start accessing
the lab for your work.

Recommended Texts:

Goldstein et. al. 2018. Scanning electron microscopy and x-ray microanalysis, 4e. Springer Science Business
Media LLC. New York. ISBNs: 9781493966745 and 9781493966769

Several text books will be placed in BC 1075 for use in BC 1075. These books may not be removed from
the SEM lab or Dr. Goddard will remove the privilege of use!

Many links are also available through the internet for explanation of topics covered. You should be able to pull
lots of information when you search for lecture topics.

Grading: There are two parts to this course, the lecture and the laboratory, but students must understand that this
course is a laboratory intensive course and that they will need to spend significant independent time in the
laboratory. There are slightly more points available through laboratory assignments than lecture exams that
count toward your course grade.

Lecture Exams (300 pts): There will be 3 one-hour exams in this course. Each exam mainly will cover
approximately 1/3 of the lecture material but each exam is comprehensive and can ask questions from
any material covered since day one. Each of the three exams will be worth 100 pts.

Lab Image Portfolio (200 pts.): Throughout the course, students will be assigned comparative parameters
that they will use to photograph specimens. Students will be required to make a high resolution
electronic portfolio of the comparative images to be turned in to Dr. Goddard. Due dates for parts of the
portfolio are listed in the calendar section of this syllabus. The full portfolio requirements and
submission requirements will be provided separately. The final portfolio must be in working form on
the computer in BC 1076 by 5:00 p.m. on Friday, April 24, 2020. There is a 10 point deduction per
day from the 200 point score for submissions turned in late for portfolios; turned in during the
weekend, and for the first three days after the deadline. There is a 25 point deduction per day for
portfolios turned in on or after April 30, 2020.

Basic Check-out Exam (50 pts): After their first instruction on the SEM, students are required to use the
microscope only during business hours following the rules outlined during lab. It is preferred that students
work in pairs or small groups for their first 8 hours of logged use on the microscope. Early independent
use (no partner) also may be allowed but students should make sure Dr. Goddard is available to handle
problems encountered. Once a student has logged eight hours of use and feels confident in their use of the
microscope, you must schedule a basic check-out exam with Dr. Goddard. The requirements for this
checkout are posted at the end of this syllabus. Each student is graded on their performance using the
SEM using either their own required fixed and processed samples (e.g. Drosophila virilus) or other sample
that is provided. For the student sample, the quality of preparation will be evaluated during the check-out
(e.g. dehydration followed by CPD). All basic checkouts must be attempted before the end of 5 March
2020! Significant late penalty point deductions will be applied after this date. After passing this check-
out, students can operate the SEM independently, and they may work in the laboratory (including the
microscope) on nights and weekends provided this privilege is not abused.

Oral Proficiency Exams (100 pts): Each student will orally articulate and demonstrate any laboratory
procedures learned during the class including basic and advanced microscope use during the weeks of
April 13 - 17 and 20 - 24. After the basic check-out exam, students are expected to ask questions of the
instructor based on the lab demonstrations and their independent use leading to portfolio images so that
they are “expert” by the time they take this 100 point exam.

Research projects (Graduate Students): BIOL 6450 (100 pts). Since the SEM represents a tool for
acquiring high quality research data, students must propose a research topic that can be studied using
the equipment and procedures learned in the course. Students will research the literature and take
preliminary photographs of any specimens that fit into a scientifically valid study. Graduate students
will give a 10 min PowerPoint presentation, on their proposed research project during a lecture period
TBA but near March 1st. A final 20 min PowerPoint in the format of a scientific talk and containing
images from the SEM, will be presented to the class on April 29, 2020 during the lecture period. The
PowerPoint presentation given by the graduate student will have a title slide and an abstract slide with
full abstract at the beginning of the presentation (not used in presentation), and a slide with fully cited
references at the end of the presentation. The Ppt presentation must be given to Dr. Goddard well in
advance of the presentation (electronically) so that notes / handouts can be distributed to students in the
class.

Attendance: Students who miss class (lecture or laboratory) will lose points toward their final grade. Don’t miss class.

Midterm Date: 5 March 2020; last day to drop without penalty is 12 March 2020

FERPA: The Family Educational Rights and Privacy Act (FERPA) prohibits the posting of grades by social security number or in
any manner personally identifiable to the individual student. Grades will not be posted by social security number or by name. No
grades can be given over the telephone, as positive identification cannot be made by this manner.
Students with Disabilities: Students requesting classroom accommodations or modifications because of a documented disability should contact the professor of this course and the Access Office for Students with Disabilities located in Farber Hall. The Access Office phone numbers are 245-2498 (voice) and 219-1285 (tty), and 375-5871 (Video Phone).

Grading: The final grades will be based on a percentage of your cumulative points relative to the total points possible: Guaranteed grade distribution is as follows (Max. pts = 650 for BIOL 4450; 750 for BIOL 6450):

<table>
<thead>
<tr>
<th>Grade</th>
<th>Points Available</th>
<th>BIOL 4450</th>
<th>BIOL 6450</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90-100%</td>
<td>Points: 300</td>
<td>Points: 300</td>
</tr>
<tr>
<td>B</td>
<td>80-89%</td>
<td>Lecture Exams:</td>
<td>Lecture Exams:</td>
</tr>
<tr>
<td>C</td>
<td>70-79%</td>
<td>Basic Check-Out:</td>
<td>50</td>
</tr>
<tr>
<td>D</td>
<td>60-69%</td>
<td>Oral Proficiency Exam:</td>
<td>100</td>
</tr>
<tr>
<td>F</td>
<td>≤ 59%</td>
<td>Lab Image Portfolio:</td>
<td>200</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>650 pts</td>
<td>750 pts</td>
</tr>
</tbody>
</table>

Tentative EXAM SCHEDULE:

- Exam 1: Monday, 17 February 2020
- Exam 2: Monday, 30 March 2020
- Exam 3: Monday, 4 May 2020

Final Exam Period: Wednesday-May 6; 12:30 – 2:30 p.m. (Currently there is no final exam scheduled for this course. The final exam period may be used for the last regular lecture exam or graduate student research presentations should any scheduling conflicts arise in the tentative course schedule listed below.

It is expected that both the students and instructor will abide by the University policy on academic integrity found in the Student Code of Conduct:

General Course Objectives [Relevance to University General Education Outcomes listed as VSU#, for Biology undergraduate educational outcomes as BIOL #, and for Biology Masters educational outcomes as MS #]:

At the end of the course, each student will be able to:

1. Operate all instruments pertaining to SEM preparation (CPD, Sputter Coater, etc.) [VSU #3, BIOL #1, MS #1]
2. Operate the SEM proficiently and safely in all modes of operation. [VSU #3, BIOL #1, MS #1]
3. Analyze elemental characteristics of various samples [VSU #3, BIOL #1, MS #1]
4. Use image analysis software to make simple measurements of digital images. [VSU #7, BIOL #1, MS #1]
5. Understand what types of samples are amenable to SEM examination under different modes of operation. [VSU #5, BIOL #3, MS #1]
6. Identify the basic types of data that the SEM can produce and how that data can be interpreted and analyzed. [VSU #7, BIOL #1, MS #1]
7. Identify topical content standards that can be addressed with an SEM study. [VSU #5, BIOL #1 & 3, MS #1]
8. Additional for Graduate Course 6450:
 - Develop a good scientific question that leads naturally to a good experimental design that is carried through to a written paper in the format of a scientific journal. [MS #2]
9. Present image data in a written portfolio of required images generated throughout the course. [VSU #7, BIOL #1, MS #2]
10. Present an oral PowerPoint presentation to the class of a research proposal to study a biological problem with SEM. [VSU #4 & 7, BIOL #1, MS #1 & 2]
Tentative Lecture and Laboratory Schedule: Note: Final portfolio requirements will be available in the first week of class but changes may be made to these requirements during the progression of the course.

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Lecture:</th>
<th>Laboratory:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>13 Jan.</td>
<td>Introduction and history of microscopy,</td>
<td>Introduction to & Safety in the Microscopy Laboratory; Collection, Fixation and preparation of specimens for SEM – Preparation of fixatives and buffers</td>
</tr>
<tr>
<td></td>
<td>15 Jan</td>
<td>Biological Specimen Preparation, Fixation</td>
<td>Dehydration and CPD</td>
</tr>
<tr>
<td>2.</td>
<td>20 Jan.</td>
<td>MLK Holiday: No Class</td>
<td>MLK Holiday: No Class</td>
</tr>
<tr>
<td>3.</td>
<td>27 Jan.</td>
<td>Magnification vs. resolution; Specimen-e-beam interactions; Resolution and contrast</td>
<td>Basic Operation of the SEM (Part 1): Cold vs. Warm start principles, Specimen exchange, turning on the microscope. Safety procedures</td>
</tr>
<tr>
<td>4.</td>
<td>3 Feb.</td>
<td>Magnification vs. resolution; Specimen-e-beam interactions; Resolution and contrast Electron Guns, Lenses, vacuum systems, SEM Modes of Operation Illumination Systems and Aberrations, Magnification, Resolution, and Depth of Field</td>
<td>Basic Operation of the SEM (Part 2): Selection of Accelerating Voltage, Spot size, mechanical stage controls. Course and Fine Stage Manipulations; Orientation of your sample for critical imaging.</td>
</tr>
<tr>
<td></td>
<td>5 Feb.</td>
<td></td>
<td>“ – second half of class.</td>
</tr>
<tr>
<td>5.</td>
<td>10 Feb.</td>
<td>Applications of LM, TEM, and SEM, Illumination sources (photons vs. accelerated electrons), Lens systems</td>
<td>Basic Operation of the SEM (Part 3): Optimization of resolution, depth of field, and signal to noise ratios, etc. Building a portfolio File Management on Lab Computer (Lacie Drive)</td>
</tr>
<tr>
<td>6.</td>
<td>17 Feb.</td>
<td>Lecture Exam #1</td>
<td>Selection of Detectors for different sample composition; BEI imaging; Carbon Coating</td>
</tr>
<tr>
<td></td>
<td>19 Feb.</td>
<td>SEM Imaging Processes SEM Signal Detectors</td>
<td>“ – second half of class.</td>
</tr>
<tr>
<td></td>
<td>24 Feb.</td>
<td>SEM Contrast Forma and Image Quality Other Contrast Mechanisms</td>
<td>Basic Checkout Lab Exams</td>
</tr>
<tr>
<td></td>
<td>26 Feb.</td>
<td></td>
<td>Basic Checkout Lab Exams</td>
</tr>
<tr>
<td>8.</td>
<td>2 Mar.</td>
<td>Grad Student Research Proposals Due</td>
<td>Portfolio prep.</td>
</tr>
<tr>
<td>9.</td>
<td>9 Mar.</td>
<td>Microscopy of Non-Conducting Specimens</td>
<td>Advanced Operation: Low Voltage SEM & Low Vacuum SEM</td>
</tr>
<tr>
<td></td>
<td>18 Mar.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>23 Mar.</td>
<td>Low Voltage Microscopy</td>
<td>Advanced Operation: Energy Dispersive X-ray analysis</td>
</tr>
<tr>
<td></td>
<td>25 Mar.</td>
<td>Variable Pressure SEM and Environmental SEM.</td>
<td>“ – second half of class.</td>
</tr>
<tr>
<td>12.</td>
<td>30 Mar.</td>
<td>Lecture Exam #2</td>
<td>30 March</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td>1 April</td>
<td>1 April</td>
<td>“ – second half of class.</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>6 April</td>
<td>High-Resolution Microscopy methods</td>
<td>6 April</td>
</tr>
<tr>
<td>8 April</td>
<td>8 April</td>
<td>Image Artifacts; Measuring Image data with ImageSys.; Photoshop and maintenance of image data</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>13 April</td>
<td>Final Check-out Exams – possibly no lecture...</td>
<td>13 April</td>
</tr>
<tr>
<td>15 April</td>
<td>15 April</td>
<td>Final Checkout / Oral exams</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>20 April</td>
<td>Analytical SEM: Qualitative X-ray Analysis with EDS and WDS</td>
<td>20 April</td>
</tr>
<tr>
<td>22 April</td>
<td>22 April</td>
<td>Final Portfolio due on Friday! 5 p.m.</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>27 April</td>
<td>Stereomicroscopy. Image Processing</td>
<td>27 April</td>
</tr>
<tr>
<td>29 April</td>
<td>29 April</td>
<td>Lab Clean-Up (Required!)</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>4 May</td>
<td>Lecture Exam #3</td>
<td>4 May</td>
</tr>
<tr>
<td>6 May</td>
<td>Final Exam Period 2:45 – 4:45 pm Only if needed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Check out procedure for use of the JEOL 6480 SEM

1. Student will have a minimum of 8h logged time on the SEM.
2. Student will demonstrate proper sample handling techniques and use of sample preparation instruments (e.g. CPD, sputter coater, carbon coater).
 a. Students are provided with an FAA fixed sample of *Drosophila virilis*. The sample is stored in FAA.
 b. Students should wash and dehydrate their sample.
 c. Students will critical point dry, mount and coat their sample with Au/Pd for checkout.
 d. During checkout students will be asked to acquire a focused image of their sample in the orientations and magnifications that will correlate with Dr. Goddard’s reference sample.
3. User will demonstrate proper sign in using the electronic log book.
4. User will demonstrate proper sample exchange including all safety protocols.
5. User will demonstrate how to acquire an image of their sample.
6. User will be able to demonstrate differences in signal acquisition for different materials using variable accelerating voltage.
7. User will be able to demonstrate proper change of final aperture, centering, and use of different apertures for different image characteristics.
8. User will be able to properly and safely demonstrate different image characteristics resulting from changing working distance.
9. User will be able to adjust the microscope parameters to acquire a low magnification image with increased depth-of-field.
10. User will be able to optimize microscope parameters to acquire a sharply focused, high-resolution image at high magnification (ca. 50 -100,000 x).
11. User will demonstrate safe stage manipulations (tilt, rotate) at short working distances.
12. User will be able to competently acquire a digital photograph of an optimal image of interest for any working parameters.
13. User will exercise proper clean methods in data removal from the microscope so as to prevent the spread of any computer viruses to the SEM computers.
14. User will demonstrate shutdown procedures to a standby setting and/or a full shutdown of the instrument.

Advanced procedures not included in check-out but requiring further training:

- LV SEM (Low vacuum SEM)
- BSE signal detection.
- EDS element analysis and mapping