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A B S T R A C T

The recent and rapid digitization of biodiversity data from natural history collection (NHC) archives has en-
riched collections based data repositories; this data continues to inform studies of species' geographic dis-
tributions. Here we investigate the relative impact of plant data from small natural history collections (collec-
tions with< 100,000 specimens) on species distributional models in an effort to document the potential of data
from small NHCs to contribute to and inform biodiversity research. We modelled suitable habitat of five test case
species from Fuireneae (Cyperaceae) in the United States using specimen records available via the Global
Biodiversity Information Facility and that of data ready to mobilize from two regional small herbaria. Data were
partitioned into three datasets based on their source: 1) collections-based records from large NHCs accessed
GBIF, 2) collections-based records from small NHCs accessed from GBIF, and 3) collections-based records from
two small regional herbaria not yet mobilized to GBIF. We extracted and evaluated the ecological niche re-
presented for each of the three datasets by applying dataset occurrences to 14 environmental factors, and we
modelled habitat suitability using Maxent to compare the represented distribution of the environmental values
among the datasets. Our analyses indicate that the data from small NHCs contributed unique information in both
geographic and environmental space. When data from small collections were combined with data from large
collections, species models of the ecological niche resulted in more refined predictions of habitat suitability,
indicating that small collections can contribute unique occurrence data which enhance species distribution
models by bridging geographic collection gaps and shifting modelled predictions of suitable habitat. Inclusion of
specimen records from small collections in ongoing digitization efforts is essential for generating informed
models of a species' niche and distribution.

1. Introduction

1.1. Background

Natural history collections (NHCs) preserve and archive biological
specimens with their associated occurrence and locality data. These
data document species diversity over time and across the globe, and are
being used to address scientific issues of global concern including cli-
mate change, infectious diseases spread, invasive species distributions,
habitat and biodiversity loss, and conservation of natural resources (see
Chapman and Speers, 2005; Crawford and Hoagland, 2009; Davis et al.,
2015; Faith et al., 2013; Gallagher et al., 2009; Lavoie, 2013; Newbold,
2010; Pyke and Ehrlich, 2010; Robbirt et al., 2011; Suarez and Tsutsui,

2004; Wen et al., 2015). The United States (US) collections community
has embraced a national digitization effort with the goal to image all US
specimens, transcribe associated collections based data, and mobilize
digitized records into a common portal over a 10-year time period
(Beach et al., 2012). This massive coordinated digitization effort will
standardize data delivery, and provide unrestricted and centralized
access to valuable and informative specimen-based biodiversity data
(Beaman and Cellinese, 2012; Gaiji et al., 2013).

The national digitization of biological specimens and their asso-
ciated data is inclusive of all research biological and paleontological
collection types, sizes, and taxonomic groups. As the digitization in-
itiative was developing, the Network for Integrated Biocollections
(NIBA) Implementation plan specifically addressed the importance of
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including digitization of specimens from small NHCs (defined as NHCs
with< 100,000 specimens per Monfils and Nelson, 2014). Small NHCs
are typically regional in scope with a defined ecological, taxonomic or
geographic focus (i.e. small colleges and universities, biological sta-
tions, field stations). Often, data from small collections are not included
in literature reviews of the regional flora and fauna, so the diversity
they archive is not represented in the collective records of species in-
ventories, field guides, local flora, and monographic studies. Increasing
the availability of small collections in aggregated databases (i.e. GBIF,
VERTNET, iDigBio Portal, SEINet) has the potential to offset spatial
sampling bias inherently present in NHC data (Chauvel et al., 2006;
Ferro and Flick, 2015). Despite such indications of their value, small
herbaria are under-consulted for scientific purposes when compared to
large herbaria (Lavoie, 2013). Using the data from Index Herbariorum
(Theirs, 2014), over 83% of herbaria are classified as small NHCs and
preliminary work in the mammal community indicates similar numbers
relative to other types of NHCs (M. Revelez, SPNHC 2015). This di-
rective to include small collection data has been championed by the
Advancing Digitization of Biodiversity Collections (ADBC) NSF pro-
gram, the Integrated Digitized Biocollections HUB (iDigBio; http://
www.idigbio.org), and the Biodiversity Collections Network (BCoN;
http://www.bcon.aibs.org). The result, a Small Collections Network
(SCNet; http://smallcollections.net), has been successful in raising the
profile and providing resources and networking capabilities to small
NHCs (Monfils and Nelson, 2014).

The specimen-based data entered into the Global Biodiversity
Information Facility (GBIF) from natural history collections have been
used extensively in species distribution modelling studies (Gaiji et al.,
2013). The reliability of collections based data for species richness and
distribution modelling has come into question with specific concerns
regarding presence only data and potential collection bias (see Beck
et al., 2013, 2014; Davis et al., 2015; Ferro and Flick, 2015; García-
roselló et al., 2014; Graham et al., 2004; Newbold, 2010; Yesson et al.,
2007). Bias in sampling that can detrimentally influence species dis-
tribution models encompasses mainly spatial scales, but also can in-
clude taxonomic, environmental, and temporal scales (Ferro and Flick,
2015; Graham et al., 2004; Guillera-Arroita et al., 2015; Meyer et al.,
2016; Newbold, 2010). Spatial bias occurs due to uneven sampling
across a geographic space or incorrect georeferencing, which has the
potential of environmentally biased occurrence data depending on the
species and the dataset (Hortal et al., 2008; Newbold, 2010; Newbold
et al., 2009). Natural history collections are susceptible to biases re-
sulting from intensive collecting in specific geographical areas or of rare
taxa (Lavoie, 2013), which can skew model results, creating models
with inaccurate portrayals of biodiversity (Austin, 2007). The most
reliable species distribution models employ data that fully characterize
a species' range of environmental conditions.

1.2. Objectives

In this study, we examine how specimen based data from small
herbaria can inform geographic species distribution modelling. Taxa
from tribe Fuireneae (Cyperaceae; sedges) were used as a case study.
Collections based data was sourced from The Global Biodiversity
Information Facility (GBIF; http://www.GBIF.org); currently the largest
aggregator of global biodiversity collections based records (Berendsohn
et al., 2010; Roberts et al., 2015). Additional data, ready for mobili-
zation but not yet publicly available in GBIF at the time, was sourced
from Valdosta State (VSC) and the Central Michigan University (CMC)
Herbaria. We used three data sets in our analysis: GBIF data from large
collections (defined as natural history collections> 100,000 speci-
mens), all GBIF data (from large and small collections), and all GBIF

data combined with data from VSC and CMC. These data were applied
to Species Distribution Modelling (SDM) analyses using Maxent to 1)
determine if data from small herbaria increases our ability to capture
the environmental range within a species, and 2) investigate how data
from small herbaria contributes to the predictive maps for habitat
suitability.

2. Materials and methods

2.1. Taxa and study area

Fuireneae (Cyperaceae) is largely composed of obligate wetland
species, including narrow endemics, with restricted habitat types and
specific environmental requirements. Four of the six Fuireneae genera
used in this study occur in the contiguous United States: Bolboschoenus
(Asch) Palla (5 of the worldwide species (15) and sub-species (2) occur
in the contiguous United States), Fuirena Rottb. (8 of the worldwide
species (58) and sub-species (5) occur in the contiguous United States),
Schoenoplectiella Lye (9 of the worldwide species (52) and sub-species
(5) occur in the contiguous United States), and Schoenoplectus (Rchb.)
Palla (14 of the worldwide species (29) and sub-species (7) occur in the
contiguous United States; species counts from Kew World Checklist
online and Flora of North America; Flora of North America Editorial
Committee, 2014; Govaerts et al., 2014). The study area was defined
within the continental United States based on the availability of con-
sistent and high quality data from both environmental and collections
databases. In the United States, taxa within the tribe are both wide-
spread (e.g. Schoenoplectus pungens) and narrow endemics (e.g. Schoe-
noplectiella purshiana). Additionally, the United States contains several
federally or state listed Fuireneae species (e.g. Fuirena squarrosa) and is
a site of rapid radiation for Schoenoplectus (Shiels et al., 2014).

2.2. Species occurrence datasets

Records were downloaded for all species in Fuireneae from GBIF
(accessed January 15th, 2015). We included additional data from
Central Michigan University (CMC; 22,000 specimens) and Valdosta
State University (VSC; 71,000 specimens). These herbaria were not
mobilized to GBIF at the time of data compilation but are currently
available online in the GBIF portal. Three subsets of data were defined:
GBIF specimen-based data from large herbaria (GBIF Large); GBIF
specimen-based data from small herbaria (GBIF Small); and regional
specimen-based data not mobilized to GBIF (CMC/VSC).

Species names and occurrence data were cleaned for use in mod-
elling (Fig. 1). Records were limited to data from preserved specimens
in the contiguous United States and names were accepted to the species
rank. Names were reconciled with current accepted taxonomy using the
Kew World Checklist (http://apps.kew.org/wcsp/), Tropicos (http://
www.tropicos.org), and the International Plant Names Index (http://
www.ipni.org). Environmental variables limited the resolution of
georeferenced occurrence data to 5′ (10 km2 at the equator); any re-
cords with insufficient geographic precision (i.e. those with 0.01 dec-
imal degrees were removed). Records in the CMC and VSC dataset
without associated geographical coordinates were georeferenced using
GEOLocate at the respective herbaria (Rios and Bart, 2010). Records
with TRS (Township, Range and Section) data were georeferenced
using the Bureau of Land Management (BLM) batch processing or by
single point translation using Earthpoint (http://www.earthpoint.us/
Townships.aspx). Specimens that could not be georeferenced reliably or
georeferenced only to county centroid were removed from the dataset.
As Maxent uses only one occurrence record per grid cell to assist in
reducing sampling bias, grid replicate occurrences from each dataset
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were removed using ENMTools (Warren et al., 2010). Further trimming
of species occurred due to a lack of available suitable environmental
data (e.g. obligate halophytic species), or contributing fewer than 25 or
10 occurrences from large or small collections, respectively (Breiner
et al., 2015; Pearson et al., 2007; Wisz et al., 2008). Because this
analysis is less sensitive to low sample size, datasets containing a
smaller amount of occurrence points (≥25) were allowed.

2.3. Environmental factors

We examined 19 bioclimatic environmental factors available from
the WorldClim database (Hijmans et al., 2005). We used a spatial

resolution of 5 arcmin and clipped the layers in ArcMap to the extent of
the contiguous United States. As model performance can be influenced
by inclusion of too many inter-correlated environmental factors, we
used ENMTools (Warren et al., 2008) to generate Pearson's correlation
coefficients for pairwise comparisons between all WorldClim variables
(Appendix A, Table A.1–A.2; Heikkinen et al., 2006; Guo, 2013). Of
these bioclimatic factors, 12 of 19 were removed due to high correla-
tion (r > |0.7|; Dormann et al., 2012), leaving seven factors (Table 1).

Soil data was downloaded from the Digital General Soil Map of the
United States (STATSGO2), and reprocessed as percent abundance of
the 12 soil orders across the United States in each cell. These layers
were resampled in ArcMap to the same processing extent and resolution
as the WorldClim bioclimatic layers. The 5 soil orders that rarely or
never co-occurred with the species data were removed (STATSGO2, Soil
Survey Staff, n.d.; Table 1).

2.4. Ecological niche comparison analysis

To examine if the distributions of the associated environmental
factors differ between our three subsets of data (GBIF Large, GBIF
Small, and CMC/VSC), the distribution values of the environmental
factors were extracted from the occurrence locations for each of the
three independent datasets. These values were tested using the non-
parametric two-sample Kolmogorov-Smirnov test (Lilliefors, 1967;
Massey, 1951) in R using the function “ks.boot” with 1000 repetitions
(Abadie, 2002; Sekhon, 2011). This non-parametric test does not re-
quire consistent sample size or assumptions of homogeneity of variance
in the data.

2.5. Species distribution modelling

The program Maxent 3.3.3k (Phillips et al., 2006) was used to model
potential suitable habitat of each of five species. Maxent uses species
occurrence records and environmental factors to build a potential dis-
tribution across a defined geographic space, where each grid cell con-
tains an index of habitat suitability (Newbold et al., 2009; Phillips et al.,
2006). This model is specifically designed to work with presence-only
datasets common in historical collections data and has been shown to
consistently perform well when compared to other models (Elith et al.,
2006; Phillips et al., 2004). Individual models were run for each of five
species that consisted of the suite of herbaria data (‘GBIF Large’), GBIF
Large and Small herbaria data (‘GBIF All’, consisting of both subsets
GBIF Large and GBIF Small), and GBIF Large and Small herbaria data
plus CMC/VSC herbaria data (‘GBIF CMC/VSC’, consisting of all three

Fig. 1. Flowchart of the pre-processing of species occurrence data from GBIF and CMC/VSC collections included in analyses. Ovals represent input and output datasets. Boxes represent
filters imposed upon the input datasets to reduce the initial datasets to the final five species. The final data was split into three separate datasets: large collections data from GBIF (GBIF
Large collection), small collections data from GBIF (GBIF Small collection), and data from the CMC/VSC collections (CMC/VSC collection). The original number of downloaded records in
GBIF was 15,967; this dataset was split into two subsets of 1269 (GBIF Large) and 122 (GBIF Small) records. The CMC/VSC dataset was reduced from 538 to 127 records.

Table 1
All WorldClim Bioclimatic and StatsGo2 soil variables. Environmental factors in bold
were included in the Maxent model for the niche modelling of Fuireneae. All other factors
were not included on the basis of being highly correlated or not relevant to the study.

Factor Measures Source

BIO1 Annual Mean Temperature WorldClim
BIO2 Mean Diurnal Range (°C, Mean of monthly temp,

max-min)
WorldClim

BIO3 Isothermality (BIO2/BIO7)(*100) WorldClim
BIO4 Temperature Seasonality (°C, standard deviation

*100)
WorldClim

BIO5 Max Temperature of Warmest Month (°C) WorldClim
BIO6 Min Temperature of Coldest Month WorldClim
BIO7 Temperature Annual Range (BIO5-BIO6) WorldClim
BIO8 Mean Temperature of Wettest Quarter (°C) WorldClim
BIO9 Mean Temperature of Driest Quarter WorldClim
BIO10 Mean Temperature of Warmest Quarter WorldClim
BIO11 Mean Temperature of Coldest Quarter WorldClim
BIO12 Annual Precipitation WorldClim
BIO13 Precipitation of Wettest Month WorldClim
BIO14 Precipitation of Driest Month WorldClim
BIO15 Precipitation Seasonality (mm, coefficient of

variation)
WorldClim

BIO16 Precipitation of Wettest Quarter (mm) WorldClim
BIO17 Precipitation of Driest Quarter WorldClim
BIO18 Precipitation of Warmest Quarter (mm) WorldClim
BIO19 Precipitation of Coldest Quarter WorldClim
Alfisols Percent contribution STATSGO2
Andisols Percent contribution STATSGO2
Aridisols Percent contribution STATSGO2
Entisols Percent contribution STATSGO2
Gelisols Percent contribution STATSGO2
Histosols Percent contribution STATSGO2
Inceptisols Percent contribution STATSGO2
Mollisols Percent contribution STATSGO2
Oxisols Percent contribution STATSGO2
Spodosols Percent contribution STATSGO2
Ultisols Percent contribution STATSGO2
Vertisols Percent contribution STATSGO2
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subsets).
To address potential spatial or environmental bias associated with

NHC specimen-based data (Phillips et al., 2009), a bias file per dataset
was created using the presence data of all Fuireneae species based on
the assumption that all Fuireneae species were being searched during a
collecting event of any given species. All occurrence records present
within a grid cell of the same resolution and extent as the environ-
mental layers were summed in ArcMap. Cells that had no occurrence
records in them (NoData) were assigned the value of 0.1 (Kramer-
Schadt et al., 2013) to indicate minimal sampling effort before ex-
porting the final three bias files.

The fourteen selected climatic and soil variables were used as en-
vironmental layers (Table 1). Linear, quadratic, product, and hinge
features were selected for all continuous variables; threshold functions
were removed as hinging threshold functions produced unrealistic
species-environment relationships (Heumann, 2013). Default values for
remaining parameters were used following Newbold et al. (2009) with
a regularization value of 1, convergence threshold of 0.00001, and a
sample of 10,000 points to characterize the background points. All
species data sets underwent 100 replicates of 1000 maximum iterations.
Each replicate used a subset of 75% of records to calibrate the model,
with the remainder of the records (25%) randomly subsampled with
replacement for each replicate to validate the model. The area under
the receiver operating characteristic curve (AUC), a threshold-in-
dependent metric, was used to examine model output compared to
random background conditions (Phillips et al., 2004).

2.6. Difference in geographical predictions

To evaluate the niche overlap between models, ENMTools (Warren
et al., 2008) was used to calculate Schoener's D and I indices for com-
parisons of each of the species models. Both indices analyze the simi-
larity present between predictions of the three dataset inputs. They
provide a direct comparison between the models, with values ranging
from 0 (no overlap between niche models) to 1 (identical niche models;
Warren et al., 2008).

Geographic differences in predicted distributions between the spe-
cies models were calculated in ArcMap by the subtraction of output
maps: GBIF CMC/VSC minus GBIF ALL (=contribution of CMC/VSC
collections data), GBIF CMC/VSC minus GBIF Large (=contribution of
small collections data overall), and GBIF ALL minus GBIF Large
(=contribution of small collections data available in GBIF). Percent
change values were classified into five classes showing how the habitat
suitability index changed in the minuend as input datasets increased
with small collections based data: 10–90% increase, 2–10% increase,
0–2% overall change, 2–10% decrease, and 10–90% decrease. The
Albers equal-area conic projection was used for all resulting maps.

2.7. Change in habitat suitability

To assess the relative impact of the three species occurrence datasets
on habitat suitability, resulting maps from Maxent were compared to
the subsets of species occurrence data. Points in the three species oc-
currence datasets of the GBIF Large, GBIF Small (if applicable), and
CMC/VSC collections data were used to extract the habitat suitability
index in ArcMap at each point location from the up to three Maxent
suitability maps produced using the data partitions for each species.
Extracted indices were compared using the Mann-Whitney U test in R
within a species dataset for species that only had records from GBIF
Large and CMC/VSC collections, and the Kruskal-Wallis test for species
that had records from each of the three datasets.

Table 2
Number of species occurrences for the three separate datasets of large collections data
from GBIF (GBIF Large), small collections data from GBIF (GBIF Small), and data from the
CMC and VSC herbaria (CMC/VSC) used as occurrence records for the Maxent modelling
of Fuireneae species geographic niches. Datasets had duplicate records removed that
occurred in the same grid cell as specified by the resolution of the environmental vari-
ables in ENMTools. Cells under “GBIF Small” for the first two species containing “n/a” did
not have species occurrences that met qualifications within small herbaria from GBIF.

Species GBIF large GBIF small CMC/VSC Total

Fuirena squarrosa 25 n/a 44 69
Schoenoplectiella purshiana 45 n/a 15 60
Schoenoplectus acutus 434 52 13 499
Schoenoplectus pungens 413 32 26 471
Schoenoplectus tabernaemontani 352 38 29 419
Total 1269 122 127 1518

Fig. 2. Locations of occurrence records used for modelling from a) large collections from
GBIF (n = 1269), b) small collections from GBIF (n = 122), and c) CMC and VSC small
herbaria (n= 127). Each colored point represents one occurrence. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of
this article.)
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3. Results

3.1. Number of records used in modelling

A total of five species were included in the analyses (Table 2). The
total number of Fuireneae records originally returned from the GBIF
database was 15,967, of which 13,411 (84%) originated from vou-
chered herbarium specimens. Of vouchered specimens, a total of 5164
(34%) records included a georeferenced locality. The final reduced
GBIF data set consisted of 1391 records from the three subsets: 1269
from large collections (Fig. 2a) and 122 from small collections (Fig. 2b).
Records from the CMC/VSC collections totaled 127 (Fig. 2c, Table 2).

3.2. Ecological niche comparison analysis

The majority of all comparisons among datasets for each of the five
species had a minimum of five significantly different environmental
factors, with 62.34% of all dataset comparisons showing significantly
different environmental values between datasets (Table 3, Appendix B,
Figs. B.1–B.5). Of the significantly different comparisons, 41.67% were
soil factors and 58.33% were climatic variables. One species, S. acutus,
did not have significant differences in soil or climatic variable between
the records from GBIF Large and GBIF Small datasets, but did have 10
and 11 significant soil and climatic differences when the CMC/VSC
collections datasets were compared to GBIF Large and GBIF Small da-
tasets, respectively. Schoenoplectus tabernaemontani had the highest
number of significant soil and climatic differences (73.81%) among the
three-dataset comparisons.

3.3. Model results

Output maps display habitat suitability indices for the models based
on data from GBIF Large, GBIF All, and GBIF CMC/VSC collections data
(see Figs. 3-7). The habitat suitability indices for F. squarrosa lessened

throughout the western half of the United States when CMC/VSC col-
lections data were added, as is congruent with the currently known
distribution, though the majority of cells experienced little to no change
in the habitat suitability index. The habitat suitability indices for S.
purshiana showed greater change in the mid-eastern U.S. regions.
Schoenoplectus acutus, S. pungens, and S. tabernaemontani are widely
distributed species across the United States, and all had distinct varia-
tions present across the background suitability indices. The mean
testing AUC values from the Maxent model for each species dataset
ranged from 0.655 to 0.933 (Appendix A, Table A.3).

3.4. Difference in geographical predictions

All models became less similar (both D and I) as more small col-
lections data were added to the input (Table 4). The greatest differences
were seen between the models when examining data for F. squarrosa
(D= 0.826, I= 0.971) and S. purshiana (D = 0.745, I= 0.909); both
species had no small collections data from GBIF added, occupy a nar-
rower range in the United States than the Schoenoplectus species, and
were comparatively heavily sampled in the CMC/VSC collections.

The comparisons between the two models of GBIF & CMC/VSC
collections data and GBIF Large collections data showed the greatest
overall differences in every species by percent (Figs. 3-7, Supplemen-
tary material Appendix A, Table A.4). For species that had three data-
sets to compare, the comparison between the models based on GBIF &
CMC/VSC collections data and based on GBIF Large collections data
had the lowest number of cells in the class of 0–2% change in cell
predictions (21.54% - 28.70%). This was lower than the two remaining
model comparisons (GBIF Small collections data vs. GBIF Large col-
lections data and GBIF Small collections data vs. GBIF & CMC/VSC
collections data) that had a calculated 0–2% change in cell predictions
of 28.18% - 34.87%. The two species, F. squarrosa and S. purshiana, with
the single comparison of GBIF & CMC/VSC data and GBIF Large data
had a smaller difference between models as 55.94% to 64.19% of cells

Fig. 3. Geographic differences between the maps of the
habitat suitability index for the following model compar-
isons: GBIF & CMC/VSC data – GBIF Large data for Fuirena
squarrosa. Colors in maps and legends correspond to the
categorized percent increase or decrease in grid cells that
the first model output listed experienced after the subtrac-
tion of the second model. For interpretation of the refer-
ences to color in this figure legend, the reader is referred to
the web version of this article.)
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had a 0–2% change; however, large differences still occurred between
models.

Schoenoplectus tabernaemontani had the largest number of cells with
differences> 2% in predictions. The comparison between the model
based on the GBIF Large collections dataset and the model based on
GBIF & CMC/VSC collections datasets had the highest percentage of
cells (19.33% increase and 3.97% decrease) displaying over a 10%
change, whereas the remaining two model comparisons had fewer cells
(9.4% increase and 4% decrease) displaying over a 10% increase or
decrease. Fuirena squarrosa had the lowest percent change overall with
64.19% of cells experiencing less than a 2% difference.

3.5. Change in habitat suitability

The small collections data when added to the models did not in-
crease the habitat suitability indices for the applied GBIF Large dataset
(Appendix A, Table A.5). However, the mean habitat suitability indices
for the applied CMC/VSC dataset increased when GBIF Small collec-
tions were included in the input. The mean habitat suitability index for
the applied CMC/VSC occurrences increased by 0.07–0.25 for all spe-
cies with the input of CMC/VSC data.

4. Discussion

4.1. Influence of small collections data on habitat suitability of Fuireneae

The regional representation present in small collections data is an
important source of data with potential to enhance the value of biodi-
versity studies. Both the characterized environmental ranges and the
resulting models of suitable habitat were markedly affected by the
addition of data from small collections, showing the impact that even

two small herbaria (CMC&VSC) can have on SDMs. Increasing the
number of species occurrences through specific inclusion of data from
small collections produced a model built on a more robust definition of
the species environmental ranges.

Numerous studies have suggested that adding a higher number of
input occurrences increases model performance (see Cumming, 2000;
Hernandez et al., 2006; Stockwell and Peterson, 2002; Wisz et al.,
2008); however, by partitioning herbarium data into classes based on
size attributes of their sources, our study indicates the nature of the
data source can also be an important factor. Including data from small
collections alongside data from large collections capitalizes on the ro-
bust regional sampling of diversity typical of small collections and to-
gether with data from large collections the combined datasets are able
to produce an adjusted, greater understanding of species distributions.
Three of the species (S. acutus, S. pungens, and S. tabernaemontani) used
in the study had> 350 records in the GBIF Large collection dataset,
with fewer than 40 records added cumulatively from both GBIF Small
and the CMC/VSC small collection datasets. All three of these species
experienced significant differences among models based on datasets of
large and small collections despite the relatively small percentage of
occurrence points contributed from small collections to the occurrence
dataset. If a similar range and environmental conditions are sampled by
multiple datasets, then the impact of combining these datasets will be
less apparent than when combining multiple datasets which sample
different areas of the species range. In this study, data from small col-
lection datasets (GBIF Small and CMC/VSC) complimented the GBIF
Large data set, and as they represent occurrence records with unique
environmental data, data from small collections is essential for the
development of a robust and comprehensive species distribution model.

The AUC indicates non-randomness of the habitat suitability output,
and is an assessment metric that was used to compare the model

Fig. 4. Geographic differences between the maps of the
habitat suitability index for the following model compar-
isons: GBIF & CMC/VSC data – GBIF Large data for
Schoenoplectiella purshiana. Colors in maps and legends
correspond to the categorized percent increase or decrease
in grid cells that the first model output listed experienced
after the subtraction of the second model. (For interpreta-
tion of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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outputs with a random model. Generalist species will tend to have a
lower AUC than specialist species based on their inherent distributions.
The AUC (Appendix A, Table A.3) for three species, S. purshiana, S.
pungens, and S. tabernaemontani, decreases consistently as more data
from small collections are added. Since generalist species such as S.
pungens and S. tabernaemontani are able to survive in a wider niche, the
addition of more occurrence points results in the expansion of the
modelled niche (thus encompassing a greater range of environmental
characteristics). Predictably, the result is more random model predic-
tions (Lobo et al., 2008). Conversely, F. squarrosa inhabits a smaller
niche, and as more occurrences are added to the model inputs, the AUC
rises indicating the modelled habitat becomes more specific.

In further support of small collections providing a valuable data
resource for species distribution modelling, the addition of small col-
lections to model inputs in this study resulted in the ability of models to
better predict other small collections data (Appendix A, Table A.5, see
S. pungens and S. tabernaemontani). While this seems obvious and may
lack statistical rigor, it supports the assertion that omitting data from
small collection datasets can negatively affect model results. In terms of

Schoener's D and I statistics, none of the five species had an identically
modelled niche, and the addition of more small collections decreased
the overlap. The species with a narrow range in the United States, F.
squarrosa and S. purshiana, had the least overlap while the remaining
widespread species in Schoenoplectus had above 0.9 for both the D and
the I. Although the Schoenoplectus species had a greater number of oc-
currences, as seen with the environmental value assessment, increased
sample size alone does not produce a more accurate or precise model.
The three species that contributed over 350 occurrence points from the
GBIF Large collections (S. acutus, S. pungens, and S. tabernaemontani)
were the most widely distributed species in this study, making them
inherently difficult for modelling as they have a wide range of habitats
that are challenging to precisely define as a much larger sample size is
required (Hernandez et al., 2006).

The small collections datasets used within this study contributed a
disproportionately large amount of unique information for the building
of our model. These data are able to fill in gaps in our understanding of
the ecological parameters under which these species live, thus refining
the model and mapping with greater accuracy. With narrowly endemic

Fig. 5. Geographic differences between the maps of the
habitat suitability index for the following model compar-
isons: GBIF All data – GBIF Large data, GBIF CMC/VSC data
– GBIF All data, and GBIF & CMC/VSC data – GBIF Large
data for Schoenoplectus acutus. Colors in maps and legends
correspond to the categorized percent increase or decrease
in grid cells that the first model output listed experienced
after the subtraction of the second model. (For interpreta-
tion of the references to color in this figure legend, the
reader is referred to the web version of this article.)

H.E. Glon et al. Ecological Informatics 42 (2017) 67–78

74



species, such as S. purshiana, a smaller sample size could suffice if it is
able to encompass on a regional scale all ecological characteristics of
that species for the input environmental factors. The increase of 0.25 in
the mean habitat suitability index for the S. purshiana CMC/VSC da-
taset, combined with the lowest niche overlap of the five species, de-
monstrated that the addition of data from small collections, both from
GBIF small NHCs and the CMC/VSC datasets, captured unique geo-
graphical and ecological data for the species that was not present in the
large NHC datasets available through GBIF.

This study is intended as a case study to demonstrate the value of
data available in small collections when building species distribution
models from NHC's. As with all species distribution models, limitations
persist in the resulting models. We focused this analysis on the potential
impact and contribution of small collections data to niche-based mod-
elling using the widely used and accepted Maxent model as an ex-
emplar. Our analyses are based on reliable and easily available climate
and soils data at a relatively coarse grain to describe and define species
niches. Though finer grain data and the additional of other environ-
mental factors such as land use histories and spatial landscape

relationships also affect species distributions, they were not included in
these analyses due to increased model complexity and lack of com-
prehensive available data.

Small collections are rich resources for unduplicated specimens re-
presenting intense regional, temporal, and community sampling,
creating a “hidden source” of specimens (Nelson and Monfils, 2015).
This is reflected in the contributed data from CMC and VSC collections.
The CMC and VSC collections represent a high diversity of Fuireneae
taxa. The regional CMC and VSC physical collections are in close
proximity to areas of high diversity for the tribe and their respective
herbarium directors have research focused on Fuireneae species. This
results in directed collections of the regional narrow endemic species
within the tribe. This typifies a trend found for the taxonomic diversity
of small collections. Though each collection may not individually
contribute substantially to all models across all taxa, once all small
collections are mobilized in accessible databases, they will together
have vast potential to improve species distribution models through
their fine scale and directed sampling.

Fig. 6. Geographic differences between the maps of the
habitat suitability index for the following model compar-
isons: GBIF All data – GBIF Large data, GBIF CMC/VSC data
– GBIF All data, and GBIF & CMC/VSC data – GBIF Large
data for Schoenoplectus pungens. Colors in maps and legends
correspond to the categorized percent increase or decrease
in grid cells that the first model output listed experienced
after the subtraction of the second model. (For interpreta-
tion of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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4.2. Conclusions

Online data portals, such as the expanding GBIF portal (based on
both collections and observation based data) and iDigBio (based solely
on collections data), are critical as they increase the accessibility of
freely available biodiversity data from herbaria and natural history
collections, enabling efficient extraction and compilation of data from
numerous sources into a standard dataset. Currently, large natural
history collections are the primary contributors in the digitization
movement of natural history collections (Ariño, 2010; Gaiji et al.,
2013). Increasing the availability of data from small collections in on-
line databases will expand our understanding of biota, not only globally
but on a highly refined localized scale.

This research has demonstrated the potential impact of small col-
lections not only in terms of the geographic and environmental dis-
tribution added by small collections datasets, but also the impact these
data can have when used in a species distribution models. We also
demonstrated the importance of carefully working with these data to

meet the stringent requirements for data analysis, particularly the
geospatial attributes of the data. To increase the utility of biodiversity
collections data, as digitization and specimen collection efforts con-
tinue, adherence to best georeferencing practices is essential particu-
larly in small collections that are of manageable size (see Guralnick
et al., 2007; Maldonado et al., 2015).

As a community, it is necessary for natural history collections
curators to maintain networks that incorporate all types and sizes of
collections. The contributions from all collections provide the resolu-
tion, expertise, and reliability to make more precise predictions of
species distributions. This case study using Fuireneae aids in illustrating
the potential value of small collections in creating reliable species dis-
tribution models and reinforces the need for inclusion of all collections
data into publicly accessible databases such as GBIF and iDigBio.
Inclusion of data from small regional collections has untapped potential
to increase the resolution of scientific studies and enhance our under-
standing of global biodiversity.

Fig. 7. Geographic differences between the maps of the
habitat suitability index for the following model compar-
isons: GBIF All data – GBIF Large data, GBIF CMC/VSC data
– GBIF All data, and GBIF & CMC/VSC data – GBIF Large
data for Schoenoplectus tabernaemontani. Colors in maps and
legends correspond to the categorized percent increase or
decrease in grid cells that the first model output listed ex-
perienced after the subtraction of the second model. (For
interpretation of the references to color in this figure le-
gend, the reader is referred to the web version of this ar-
ticle.)
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GBIF
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Schoenoplectiella
purshiana
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1 1 n/a n/a – –

GBIF
CMC/VSC

0.745 0.909 n/a n/a 1 1
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Schoenoplectus
tabernaemontani

Large
GBIF
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0.912 0.993 0.935 0.996 1 1

H.E. Glon et al. Ecological Informatics 42 (2017) 67–78

77

https://doi.org/10.1016/j.ecoinf.2017.09.009
https://doi.org/10.1016/j.ecoinf.2017.09.009
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0005
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0005
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0010
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0010
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0015
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0015
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0020
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0020
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0025
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0025
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0025
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0030
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0030
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0035
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0035
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0040
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0040
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0040
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0045
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0045
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0050
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0050
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0050
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0055
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0055
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0060
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0060
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0060
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0065
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0065
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0070
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0070
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0070
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0075
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0075
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0080
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0080
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0085
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0085
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0090
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0090
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0090
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0090
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0095
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0095
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0100
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0100
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0100
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0105
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0105
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0110
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0110
http://www.gbif.org/2014-science-review
http://www.kew.org/wcsp/
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0125
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0125
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0130
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0130
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0135
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0135
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0135
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0140
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0140
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0145
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0145
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0150
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0150
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0150
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0155
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0155
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0155
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0160
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0160
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0165
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0165
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0170
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0170
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0175
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0175
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0175
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0180
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0180
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0185
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0185
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0190
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0190
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0190
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0195
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0195
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0200
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0200
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0205
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0205
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0205
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0210
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0210
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0215
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0215
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0215
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0220
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0220
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0225
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0225
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0225
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0230
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0230


Phillips, S.J., et al., 2006. Maximum entropy modeling of species geographic distribu-
tions. Ecol. Model. 190, 231–259.

Phillips, S.J., et al., 2009. Sample selection bias and presence-only distribution models:
implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197.

Pyke, G.H., Ehrlich, P.R., 2010. Biological collections and ecological/environmental re-
search: a review, some observations and a look to the future. Biol. Rev. 85, 247–266.

Rios, N.E., Bart, H.L., 2010. GEOLocate (Version 3.22) [Computer Software]. Tulane
University Museum of Natural History, Bell Chasse, LA.

Robbirt, K.M., et al., 2011. Validation of biological collections as a source of phenological
data for use in climate change studies: a case study with the orchid Ophrys sphegodes.
J. Ecol. 99, 235–241.

Roberts, R.P., et al., 2015. Available at: http://www.nsf.gov/funding/pgm_summ.jsp?
pims_id=503559.

Sekhon, J., 2011. Multivariate and propensity score matching software with automated
balance optimization: the matching package for R. J. Stat. Softw. 42.

Shiels, D.R., et al., 2014. Monophyly and phylogeny of Schoenoplectus and
Schoenoplectiella (Cyperaceae): evidence from chloroplast and nuclear DNA se-
quences. Syst. Bot. 39, 142–144.

Soil Survey Staff, Natural Resources Conservation Service, United States Department of

Agriculture Web Soil Survey (STATSGO2). Available online at. http://websoilsurvey.
nrcs.usda.gov.

Stockwell, D.R.B., Peterson, T.A., 2002. Effects of sample size on accuracy of species
distribution models. Ecol. Model. 148, 1–13.

Suarez, A.V., Tsutsui, N.D., 2004. The value of museum collections for research and so-
ciety. Bioscience 54, 66–74.

Theirs, B., 2014. Index Herbariorum: a global directory of public herbaria and associated
staff. In: New York Botanical Garden's Virtual Herbarium, Available at: http://
sweetgum.nybg.org/ih.

Warren, D.L., et al., 2008. Environmental niche equivalency versus conservatism:
Quantitative approaches to niche evolution. Evolution 62, 2868–2883.

Warren, D.L., et al., 2010. ENMTools: a toolbox for comparative studies of environmental
niche models. Ecography 33, 607–611.

Wen, J., et al., 2015. Collections-based systematics: opportunities and outlook for 2050. J.
Syst. Evol. 53, 477–488.

Wisz, M.S., et al., 2008. Effects of sample size on the performance of species distribution
models. Divers. Distrib. 14, 763–773.

Yesson, C., et al., 2007. How global is the global biodiversity information facility? PLoS
One 2, e1124.

H.E. Glon et al. Ecological Informatics 42 (2017) 67–78

78

View publication statsView publication stats

http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0235
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0235
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0240
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0240
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0245
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0245
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0250
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0250
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0255
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0255
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0255
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503559
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503559
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0265
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0265
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0270
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0270
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0270
http://websoilsurvey.nrcs.usda.gov
http://websoilsurvey.nrcs.usda.gov
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0280
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0280
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0285
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0285
http://sweetgum.nybg.org/ih
http://sweetgum.nybg.org/ih
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0295
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0295
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0300
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0300
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0305
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0305
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0310
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0310
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0315
http://refhub.elsevier.com/S1574-9541(17)30123-1/rf0315
https://www.researchgate.net/publication/320128619

	The contribution of small collections to species distribution modelling: A case study from Fuireneae (Cyperaceae)
	Introduction
	Background
	Objectives

	Materials and methods
	Taxa and study area
	Species occurrence datasets
	Environmental factors
	Ecological niche comparison analysis
	Species distribution modelling
	Difference in geographical predictions
	Change in habitat suitability

	Results
	Number of records used in modelling
	Ecological niche comparison analysis
	Model results
	Difference in geographical predictions
	Change in habitat suitability

	Discussion
	Influence of small collections data on habitat suitability of Fuireneae
	Conclusions

	Acknowledgements
	Supplementary data
	References




