Mapping Student Arrivals and Departures: Using Graphical Information Software (GIS) to Examine Admission, Enrollment, and Retention Trends

Christopher Neasbitt,
Programmer Analyst Associate (cjneasbi@valdosta.edu)

Kristina M. Cragg, Ph.D.,
Assistant to the President for Strategic Research & Analysis
(kmcragg@valdosta.edu)

Amir Atabekov,
Student Assistant

Valdosta State University – Strategic Research & Analysis
Issues for Institutional Researchers

- You are interesting in learning about how GIS can be used in IR offices.

- You are looking for simple and visual ways of showing data patterns using different techniques.

- You are getting bored in your office and GIS sounds like something you’d like to learn more about.

- This was the best session during this timeslot.
By the End of this Presentation ...

- ... We Will Have Discussed:
 - Motivation for the Study & Research Questions
 - Research Questions
 - Data & Sample
 - Variables
 - Methods
 - Limitations
 - Results
 - Possible Implications
 - Questions & Comments
Motivation for the Study & Research Questions

• Most problems have a geographic element. How can we use that element in data analysis?

• GIS has been used in industry as a tool to analyze problems with geographic elements.
 - Ex. ATM Placement in urban areas

• GIS can be used in the university setting to better understand and analyze issues relating to student admissions, enrollment, and retention.
 - How have student origins (admissions, enrollment, retention) changes over time?
Data

- SIRS (Student Information Record System)
 - Student enrollment information dataset
- Banner
 - Admissions data extracts
- U.S. Census Bureau
 - TIGER/Line
 - Fixed position ascii files
 - shapefiles
- U.S. State shape layers
Variables

- Demographic (SIRS)
 - Ethnicity
 - Gender
 - County
- Academic
 - GPA
 - SAT
- Admissions
 - Enrolled
 - Accepted
 - Denied

- Geographic (U.S. Census)
 - Addresses (includes Zip codes)
 - Other data elements are available, but not used at this time.

- Reference Data (U.S. State Shape Layers)
 - State boundaries
 - County boundaries
Methods

• Architecture Overview
 • Source Data
 • Individual Student Records
 • City, County, State Boundaries
• Data Repository
 • PostgreSQL (http://www.postgresql.org/)
 • PostGIS (http://postgis.refractions.net/)
Methods

- **Architecture Overview (cont.)**
 - **Data Rendering Layer**
 - Google Maps API
 (http://code.google.com/apis/maps/documentation/)
 - ArcDesktop
 (http://www.esri.com/software/arcgis/arcims/index.html)
 - SQL Interface (Toad, RazorSql, Aqua Data Studio, etc.)
 - **Output Layer**
 - Static Maps
 - Dynamic Maps
 - Text Reports
Geocoding Library

• Created our own geocoding library to transform street addresses into long, lat coordinates

• Motivation
 • Commercial geocoding services charge by the record, budget constraints make these services an issue
 • Free geocoding services have limitations on the number of records that can be encoded in a period,
 • Google: 15,000 records per day
 • Yahoo: 5,000 records per day
Geocoding Library

- **Operation**
 - **Geoloading**
 - Converts US Census Bureau TIGER/Line data into a searchable, vendor neutral, table schema
 - **Geocoding**
 - Parses a text address into pieces
 - Searches the database for those corresponding pieces
 - On a direct address match the library returns the lat, long value
 - On a indirect address match the library calculates an approximate lat, long based on the available data points using linear interpolation
 - On no match if a zip code is available the lat, long of the zip code centroid is returned
- **Operational accuracy: 80%**
Spatial Data Repository

- Many vendors offer spatial data storage
 - Oracle Spatial
 - Microsoft SQL Server Spatial
 - ESRI ArcSDE
 - MySQL Spatial Extensions
 - PostgreSQL PostGIS
Spatial Data Repository

- We chose to store our spatial data with in a PostgreSQL DB using PostGIS for several reasons.
 - Cost effective
 - Availability of documentation
 - Interoperability with other software suites
 - Open Source
 - Standards Compliance
 - OGC Compliant
PostGIS Spatial Queries

- PostGIS provides data types for storing spatial data and operations for manipulating that data

 - Operation Types
 (http://postgis.refractions.net/documentation/manual-1.3/ch06.html)
 - Relationship Functions
 - Distance, intersection, contains, etc.
 - Processing Functions
 - Area, Length, Centroid, etc.
PostGIS Spatial Queries

- Query Example
 - Find the names of all students from Lowndes county

  ```sql
  Select
      all_sirs.last, all_sirs.first
  From
      all_sirs, gacounty04
  where
      ST_Within(all_sirs.the_geom, gacounty04.the_geom)
      and gacounty04.county = 'Lowndes'
  ```
Static Mapping

- Numerous tools available for visually displaying PostGIS layers, free and commercial.
 - QGIS (http://www.qgis.org/)
 - uDig (http://udig.refractions.net/)
 - zigGIS (http://pub.obtusesoft.com/)
 - ArcView plugin
- We have used both QGIS and ArcView with zigGIS v1.2.
Dynamic Mapping

- Pitfall
 - ArcIMS, ArcSDE and PostgreSQL/PostGIS
 - As of version 9.3 ArcSDE has supported PostgreSQL as database repository
 - Non-ESRI research provided techniques that might allow ArcSDE 9.3 to use the PostGIS spatial format
 - ArcIMS would not render the PostGIS layers through ArcSDE
 - Abandoned ArcIMS and ArcSDE for dynamic mapping purposes.
Dynamic Mapping

- Second Attempt
 - Google Maps API
 - Use ASP.NET to generate xml docs from PostGIS data.
 - Loaded the xml docs using the Google Maps API to render the data over the Google Maps Viewer
- Pros
 - Easy to generate XML
 - Simple, Free API
- Cons
 - Rendering Performance
Dynamic Mapping

- By providing dynamically queried maps on the web you can increase the utility of the data to all stakeholders.
Limitations

- **Funds**
 - Commercial software suites can be pricey
 - Open source alternatives can provide some relief
- **Time**
 - Time required to develop the geocoding library or learning to use commercial alternatives.
 - Time and effort in integrating multiple different datasets and software suites
- **Accuracy**
 - Accuracy of encoded addresses.
 - Accuracy in transforming addresses into lat, long coordinates.
Limitations

• Relevance
 • To analyze and question using GIS the problem set must have a geographic component
 • The spatial relationship to within a problem set might not be statistically significant.

• Skilled expertise in this area is not common
 • Spatial statistics is a separate field
Results

- How have student origins changed over time?
 - Calculating the spatial mean student origins for consecutive Fall semesters helps illustrate student origin shifts.
Conclusion for IR Practitioners

- Visual representation of complex data to senior leadership or key stakeholders.
- Increase the value of data by looking at same data in a different way.
- Patterns may be apparent only when looking at data using GIS.
- IR practitioners could do GIS analysis ... there are “simple” tools available
 - ESRI Arcdesktop suite software applicable to all skill levels.
Thank You

Questions & Comments