Phylogenetic insights into New World *Cyperus* (Cyperaceae) using nuclear ITS sequences

CHRISTOPHER S. REID¹, RICHARD CARTER², AND LOWELL E. URBATSCH¹

¹Louisiana State University Herbarium, Rm. A257 Life Sciences Annex, Baton Rouge, LA 70803, USA; e-mail: creid4@tigers.lsu.edu; e-mail: leu@lsu.edu

² Herbarium, Biology Department, 2035 Bailey Science Center, Valdosta State University, 1500 North Patterson St., Valdosta, GA 31698-0015, USA; e-mail: rcarter@valdosta.edu

Abstract. We analyzed nuclear ITS sequences of 95 samples representing 85 taxa of *Cyperus* sensu lato under maximum likelihood and Bayesian frameworks. This work is exploratory in nature with the objectives of gaining insight into relationships among New World *Cyperus* and targeting problematic clades for future research. In our resulting phylogenetic hypothesis, the genera *Cyperus*, *Kyllinga*, *Oxycaryum*, *Pycreus*, and *Queenslandiella* were intermixed, confirming the paraphyletic nature of *Cyperus* as reported by other researchers. We recovered a strongly-supported clade whose members possess C₄ photosynthesis. The C₃/C₄ split has also been previously reported based on research employing different methods of phylogenetic estimation and different molecular markers. We provide preliminary evidence that *Cyperus* sections *Haspani*, *Laxiglumi*, *Strigosi*, *Thunbergiani*, and *Umbellati* are not monophyletic. *Cyperus* subgenus *Diclidium*, which is characterized by a unique mode of spikelet shattering, is monophyletic and highly derived in our analysis, but additional taxa are needed for a more robust assessment. We discuss hypothesized relationships and taxonomic implications for several other species and species complexes.

Key Words: Cyperus, Cyperaceaee, nuclear ITS, phylogeny.

Even when treated in its most narrow taxonomic concept, Cyperus L. is the second largest sedge genus. Typical Cyperus (sensu stricto) is recognized as having an herbaceous habit with basally disposed leaves, a terminal anthelate inflorescence immediately subtended by leafy bracts, spikes clustered on often elongate peduncles (rays), laterally flattened spikelets with two-ranked floral scales, and flowers lacking a perianth. Most of these characteristics can be seen in Fig. 1 A-D. Cyperus includes several well-known and interesting members. Cyperus papyrus L. was an important source of paper in the early history of western civilization (Bryson & Carter, 2008). The cosmopolitan Cyperus esculentus L. (chufa or yellow nutsedge) possesses edible tubers. This species is also valued as an important wildlife food, while regarded in some settings as a weed (Bryson & Carter, 2008). Cyperus *rotundus* L. (purple nutsedge) has been branded the world's worst agricultural weed (Holm et al., 1977). Many *Cyperus* species (and other sedges) are ecologically important and are valuable to wildlife.

The question "What is *Cyperus*?" has not always been easy to answer, as evidenced by the considerable variation in the circumscription of the group (Kükenthal, 1935–1936; Koyama, 1961; Haines & Lye, 1983; Goetghebeur, 1998). *Cyperus* sensu stricto, as in Goetghebeur's (1998) scheme, is paraphyletic (Muasya et al., 1998; Simpson et al., 2007; Muasya et al., 2009a, b; Larridon et al., 2011a, 2013). With *Cyperus* as its core genus, the well-supported *Cyperus* clade also includes the genera *Alinula* Raynal, *Androtrichum* (Brongn.) Brongn., *Ascolepis* Nees ex Steudel, *Courtoisina* Soják, *Kyllinga* Rottb., *Kyllingiella* R. Haines & Lye,

Brittonia 66(3): 292–305 (2014), DOI 10.1007/s12228-014-9324-6 ISSN: 0007-196X (print) ISSN: 1938-436X (electronic) © 2014, by The New York Botanical Garden Press, Bronx, NY 10458-5126 U.S.A.

FIG. 1. Representative members of the *Cyperus* clade. A. *Cyperus strigosus*. B. *Cyperus odoratus*. C. *Cyperus haspan*. D. *Pycreus lanceolatus*. E. *Kyllinga odorata*. F. *Lipocarpha maculata*. G. *Oxycaryum cubense*. A, B, D–G by R. Carter, C by T. Jones.

Lipocarpha R. Br., Oxycaryum Nees Pycreus P. Beauv., Queenslandiella Domin, Remirea Aublet, Sphaerocyperus Lye, and Volkiella Merxm. & Czech (Muasya et al., 2009a). Some of these genera have been treated as infra-generic taxa of Cyperus in more inclusive classifications (e.g., Haines & Lye, 1983). Based on research to date, the only consistent division in the Cyperus clade is based on the C_3/C_4 photosynthetic pathways (Muasya et al., 2001; Muasya et al., 2002; Besnard et al., 2009; Larridon et al., 2011a, 2013). In their study of C₃ Cyperus, Larridon et al. (2011a) recovered a C3 grade basal to a strongly supported C₄ clade. The division of Cyperus into two groups based on presence of Kranz anatomy, an anatomical characteristic of the C₄ pathway, was originally suggested by Rikli (1895). This division was advocated by Goetghebeur (1989), who proposed that *Cyperus* sensu stricto be split into two subgenera: Anosporum (Nees) C.B. Clarke, containing species lacking Kranz anatomy and possessing C₃ photosynthesis; and *Cyperus*, comprising species with Kranz anatomy and C₄ photosynthesis. This classification is also proposed by Larridon et al. (2011b, 2013).

Recent research supports a broader circumscription of Cyperus, with the Cyperus clade containing ca. 950 species (Muasya et al., 2009b; Larridon et al., 2013). Relationships among selected members of the Cyperus clade possessing C_3 photosynthesis were estimated by Larridon et al. (2011a). A phylogenetic study of C4 segregates Kyllinga and Pycreus has been completed (Larridon et al., 2013), while a study of Lipocarpha is underway (K. Bauters, pers. comm.). The studies cited above include mainly Old World members of the *Cyperus* clade. The purpose of our study is to present an exploratory phylogenetic analysis of 85 in-group Cyperus s.l. taxa that are primarily New World natives, using sequences from the nuclear internal transcribed spacer (ITS) region. Specific objectives were to perform a preliminary assessment of the sectional classification presented in Kükenthal's (1935–1936) monograph of Cyperus, to evaluate relationships among species and species complexes represented, and to determine directions for more comprehensive work in the future.

Materials and methods

A total of 95 ingroup sequences representing 85 taxa and 14 outgroup taxa were included in our analysis (listed in Table I). Materials for most ingroup taxa were collected by the authors from the southeastern United States (Louisiana, Florida, Georgia, and Texas) in 2010 and 2011, and during an expedition to northeastern Argentina in February of 2011. Materials of several taxa were provided by other botanists. Sequences of some ingroup and most outgroup taxa were obtained from GenBank (http://www.ncbi.nlm.nih.gov/genbank/).

While a broader circumscription of *Cyperus* is warranted by previous work (reviewed above), generic limits in this paper follow the more exclusive system of Goetghebeur (1998), to provide maximum contrast in evaluating our phylogentic hypothesis. Genera included in the ingroup are *Cyperus*, *Kyllinga*, *Lipocarpha*, *Oxycaryum*, *Pycreus*, and *Queenslandiella* (Table I). Images of representatives of these genera, with the exception of *Queenslandiella*, are presented in Fig. 1. Outgroup taxa include Cyperaceous genera basal to tribe Cyperae, as well as *Juncus* L. and *Oxychloe* Phil. (Juncaceae).

Materials collected by the authors were placed in silica gel upon collection for drying. Voucher specimen information and GenBank accession numbers are provided in Table I. DNA extractions were carried out using the DNeasy Plant Minikit (Qiagen, Germantown, MD, USA). The ITS region (ITS 1 + 5.8SrDNA + ITS 2) was amplified by polymerase chain reaction (PCR) using forward primer (5'- ACGAATTCATGG sef 17 TCCGGTGAAGTGT TCG-3') and reverse primer ser 26 (5'-TAGAATTCC CCGGTTCGCTCGCCGTTAC-3') (Sun et al., 1994). This region was amplified with a touchdown protocol using the parameters 95°C, 3 min; 9X (95°C, 1 min; 55 °C, 1 min, reducing 0.5°C per cycle; 72°C, 1 min + 4 sec per cycle); 19X (95°C, 1 min; 55°C, 1 min; 72°C, 1 min); 72°C, 7 min; 4°C until stopped. Each PCR reaction consisted of 0.5 µL MasterAmpTM *tfl* polymerase (Epicentre Technologies, Madison, WI), 12.5 µL buffer GN, 8 µL sterile water, 1 µL of each primer,

TABLE I

Taxa studied with collection localities, voucher specimen information, and GenBank accession numbers.

			GenBank
Taxon	Collection Locality	Voucher Specimen	Accession No.
Bulbostylis densa (Wall.) HandMazz.			AB261663.1
<i>Kyllinga</i> sp.	Dade County, Elorida	Carter 18739	KF146651
Cyperus acuminatus Torr. & Hook.	Sabine Parish,	Reid 6171 (LSU)	KF146652
Cyperus aggregatus (Willd.) Endl. (Louisiana)	Allen Parish, Louisiana	Reid 7620 (LSU)	KF146653
Cyperus aggregatus (Willd.) Endl. (Argentina)	Corrientes, Argentina	Reid 7806 (LSU)	KF193566
Cyperus amuricus Maxim.			JX644852.1
Cyperus articulatus L.	Plaquemines Parish, Louisiana	Reid 7487 (LSU)	KF150538
Cyperus cayennensis Willd. ex Link	Corrientes, Argentina	Reid 7815 (LSU)	KF150539
Cyperus cephalanthus Torr. & Hook. (Louisiana)	Vermilion Parish, Louisiana	Reid 7058 (LSU)	KF150540
Cyperus cephalanthus Torr. & Hook. (Texas)	Brazoria Co., Texas	Reid and Rosen 7510 (LSU)	KF193567
Cyperus compressus L. (Georgia)	Lowndes Co., Georgia	Reid and Carter 7761	KF193575
Cyperus compressus L. (Louisiana)	St. Charles Parish, Louisiana	Reid 7580 (LSU)	KF150541
Cyperus corymbosus Rottb.	Corrientes, Argentina	Reid 7878 (LSU)	KF150542
Cyperus croceus Vahl	Tangipahoa Parish, Louisiana	Reid 7501 (LSU)	KF150543
Cyperus cuspidatus Kunth	Lowndes County, Georgia	Reid and Carter 7760 (LSU)	KF150544
Cyperus cyperoides (L.) Kuntze			AB261665.1
Cyperus dichrostachyus Hochst. ex A. Rich.			JX566744.1
Cyperus difformis L.	St. Charles Parish, Louisiana	Reid 7579 (LSU)	KF150545
Cyperus digitatus Roxb.	Chambers County, Texas	Reid and Rosen 7505 (LSU)	KF150546
Cyperus distinctus Steud.	Camden County, Georgia	Reid and Carter 7744 (LSU)	KF150547
Cyperus echinatus (L.) Alph. Wood (typical)	Cherokee County, Georgia	Reid and Carter 8044 (LSU)	KF150548
Cyperus echinatus (L.) Alph. Wood ("var. sphaericus")	Tangipahoa Parish, Louisiana	Reid 7504 (LSU)	KF150549
Cyperus elegans L.	St. Tammany Parish, Louisiana	Reid 7722 (LSU)	KF150550
Cyperus eragrostis Lam.	Harris County, Texas	Reid 7514 (LSU)	KF150551
Cyperus erythrorhizos Muhl. (north Louisiana)	Morehouse Parish, Louisiana	Reid 7530 (LSU)	KF193571
Cyperus erythrorhizos Muhl. (south Louisiana)	St. Charles Parish, Louisiana	Reid 7578 (LSU)	KF150552
Cyperus esculentus L. var. leptostachyus Boeck.	Plaquemines Parish, Louisiana	Reid 7481 (LSU)	KF150553
Cyperus esculentus var. macrostachyus Boeck.	Plaquemines Parish, Louisiana	Reid 7630 (LSU)	KF193572
Cyperus filiculmis Vahl	Beauregard Parish, Louisiana	Reid 7627 (LSU)	KF150554
Cyperus flaccidus R. Br.			JX644855.1
Cyperus fuscus L.	St. Charles Parish, Louisiana	Reid 7788 (LSU)	KF150555

BRITTONIA

Та	BLE I Continued		
Taxon	Collection Locality	Voucher Specimen	GenBank Accession No.
Cyperus grayoides Mohlenbr.	Bienville Parish,	Reid 7703 (LSU)	KF150556
Cyperus haspan L.	Allen Parish,	Reid 7525 (LSU)	KF150557
Cyperus hystricinus Fernald (north Louisiana)	Bienville Parish,	Reid 7705 (LSU)	KF193573
Cyperus hystricinus Fernald (south Louisiana)	Allen Parish, Louisiana	Reid 7520 (LSU)	KF150558
Cyperus imbricatus Retz.	Corrientes, Argentina	Reid 7807 (LSU)	KF150559
<i>Cyperus insularis</i> Heenan & de Lange <i>Cyperus iria</i> L.	New Zealand Corrientes, Argentina	Reid 7799 (LSU)	DQ385560.1 KF150560
Cyperus isocladus Kunth	Florida	Abbott 24946 (FLAS)	KF150561
Cyperus lancastriensis Porter	Dawson County, Georgia	Reid and Carter 8043 (LSU)	JX661627.1
Cyperus lecontei Torr. ex Steud.	Florida	Abbott 23732 (FLAS)	KF150562
Cyperus ligularis L.	Florida	Abbott 23681 (FLAS)	KF150563
Cyperus lupulinus (Spreng.) Marcks	Bienville Parish, Louisiana	Reid 7711 (LSU)	KF150654
Cyperus luzulae (L.) Rottb. ex Retz.	Corrientes, Argentina	Reid 7808 (LSU)	KF150565
Cyperus macrocephalus Liebm.	Tamaulipas, Mexico	Reid 7161 (LSU)	KF150566
Cyperus microiria Steud.			JX644858.1
Cyperus nipponicus Franch. & Sav.			JX644859.1
Cyperus ochraceus Vahl	Brazoria County, Texas	Reid and Rosen 7512 (LSU)	KF150567
Cyperus odoratus L. (Argentina)	Corrientes, Argentina	Reid 7798 (LSU)	KF150568
Cyperus odoratus L. (Louisiana)	Cameron Parish, Louisiana	Reid 7266 (LSU)	KF150569
Cyperus orthostachyus Franch. & Sav.			JX644860.1
Cyperus ovatus Baldw.	Hamilton County, Florida	Reid and Carter 7765 (LSU)	KF150570
Cyperus oxylepis Nees ex Steud.	Plaquemines Parish, Louisiana	Reid 7476 (LSU)	KF150571
Cyperus pacificus (Ohwi) Owhi			JX644861.1
Cyperus papyrus L.		D :1 8585 (1 617	AY242048.1
Cyperus pilosus Vahl	Tangipahoa Parish, Louisiana	Reid 7575 (LSU)	KF150572
Cyperus planifolius Rıch.	Dade County, Florida	Mears 5495 (LSU)	KF150573
Cyperus plukenetu Fernald	Taylor County, Georgia	Reid and Carter 8039 (LSU)	KF150574
Cyperus prolifer Lam.	Florida	Abbott 25162 (FLAS)	KF15057/5
Cyperus prolixus Kunth	Corrientes, Argentina	Reid 7902 (LSU)	KF150576
Cyperus pseudovegetus Steud.	Georgia	8035 (LSU)	Kr1303//
Cyperus puichettus K. Br. Cyperus reflexus Vahl	Corrientes,	Reid 7869 (LSU)	KF150578
Cyperus retroflexus Buckley	Bienville Parish, Louisiana	Reid 7707 (LSU)	KF150579

TABLE I Continued

Taxon	Collection Locality	Voucher Specimen	GenBank Accession No.
Cyperus retrorsus Chapm. (North Carolina)	Buncombe County,	Carter 19850	KF150580
Cyperus retrorsus (south Louisiana)	Tangipahoa Parish, Louisiana	(VSC) Reid 7502 (LSU)	KF193569
Cyperus retrorsus (north Louisiana)	De Soto Parish,	Reid 6144 (LSU)	KF193570
Cyperus rigens J. Presl & C. Presl	Corrientes, Argentina	Reid 7885 (LSU)	KF150581
Cyperus rigens subsp. serrae (Boeck.) Pedersen	Corrientes, Argentina	Reid 7868 (LSU)	KF193568
Cyperus rotundus L.	Florida	Abbott 23635 (FLAS)	KF150582
Cyperus spiralis Larridon	Africa	Wingfield 497 (K)	JX566740.1
Cyperus squarrosus L.	Plaquemines Parish, Louisiana	Reid 7554 (LSU)	KF150583
Cyperus strigosus L. (Louisiana)	St. Charles Parish, Louisiana	Reid 7581 (LSU)	KF150584
Cyperus strigosus L. (Texas)	Chambers County, Texas	Reid and Rosen 7508 (LSU)	KF193574
Cyperus surinamensis Rottb.	Plaquemines Parish Louisiana	Reid 7478A (LSU)	KF150585
Cyperus tenuispica Steud.			JX644863.1
Cyperus tetragonus Elliott	Glynn County, Georgia	Reid and Carter 7752 (LSU)	KF150586
Cyperus thyrsiflorus Jungh.	Brazoria County, Texas	Reid and Rosen 7511 (LSU)	KF150587
Cyperus ustulatus A. Rich.	New Zealand		DQ385561.1
Eleocharis tuberculosa (Michx.) Roem. & Schult.			FJ826559.1
Ficinia nodosa (Rottb.) Goetgh., Muasya, & D.A. Simpson			DQ385568.1
Fimbristylis autumnalis (L.) Roem. & Schult.			AB250627.1
Fuirena robusta Kunth	Corrientes, Argentina	Reid 7814 (LSU)	KF150588
Hypolytrum nemorum (Vahl) Spreng.			AY242046.1
Isolepis carinata Hook. & Arn. ex Torr.	Catahoula Parish, Louisiana	Reid 7962 (LSU)	KF150589
Juncus effusus L.			AY727793
Kyllinga brevifolia Rottb.	Glynn County, Georgia	Reid and Carter 7755 (LSU)	KF150590
Kyllinga odorata Vahl	Glynn County, Georgia	Reid and Carter 7753 (LSU)	KF150591
Kyllinga pumila Michx.	Glynn County, Georgia	Reid and Carter 7754 (LSU)	KF150592
Lipocarpha humboldtiana Nees	Corrientes, Argentina	Reid 7852 (LSU)	KF150593
Lipocarpha maculata (Michx.) Torr.	Charlton County, Georgia	Reid and Carter 7742 (LSU)	KF150594
Lipocarpha micrantha (Vahl) G.C. Tucker	St. Charles Parish, Louisiana	Reid 7577 (LSU)	KF150595
Oreobolus venezuelensis Steyerm.			DQ450479.1
Oxycaryum cubense (Poepp. & Kunth) Palla	Iberia Parish, Louisiana	Reid 7796 (LSU)	KF150596
Oxycaruym cubense (GB) (Submitted to GenBank as			JX566741.1
Cyperus blepharoleptos Steud.)	Lefferman D 1	D.:: 1 7(22 (LOL)	KE160507
Pycreus filicinus (Vali) I. Koyama	Jetterson Parish, Louisiana	Keid /632 (LSU)	KF150597
Pycreus flavescens (L.) P. Beauv. ex Rchb.	Caddo Parish, Louisiana	Reid 7576 (LSU)	KF150598
Pycreus lanceolatus (Poir.) C.B. Clarke	Iberville Parish, Louisiana	Reid 7698 (LSU)	KF150599

BRITTONIA

Taxon	Collection Locality	Voucher Specimen	GenBank Accession No.
Pycreus macrostachyos (Lam.) J. Raynal	Corrientes, Argentina	Reid 7819 (LSU)	KF193576
Pycreus polystachyos (Rottb.) P. Beauv.	Hamilton County, Florida	Reid and Carter 7764 (LSU)	KF150600
Pycreus sanguinolentus (Vahl) Nees ex C.B. Clarke	Camden County, Georgia	Reid and Carter 7747 (LSU)	KF150601
Queenslandiella hyalina (Vahl) Ballard	Dade County, Florida	Carter 18737 (LSU)	KF150602
Rhynchospora chinensis Nees & Meyen ex Nees			AB261680.1
Schoenoplectus pungens (Vahl) Palla			DQ385591.1
Scleria muehlenbergii Steud.	Allen Parish, Louisiana	Reid 7288 (LSU)	KF150603

TABLE I Continued

and 2 μ L template (diluted to 10⁻¹), totaling 25 µL. The ITS region of Isolepis carinata Hook. & Arn. ex Torr. was amplified using the same PCR cycle protocol but with the reaction consisting of 0.25 µL Phusion® polymerase (New England Biolabs®, Inc., Ipswich, MA), 5 µL buffer HF, 0.5 µL MgCl₂, 14.25 µL sterile water, 1 µL of each primer, and 2 µL template. Amplification of the ITS region with Phusion polymerase failed for the vast majority of taxa with which it was attempted, but for some reason was very successful with Isolpeis carinata, while the *tfl* polymerase reaction was not successful with I. carinata. Gel electrophoresis was performed to confirm success of PCR reactions. PCR products were shipped on dry ice to Beckman Coulter Genomics, Danvers, MA, for sequencing using the amplification primers. Returned sequences were subjected to a BLAST search (Altschul et al., 1990) to verify that the sequences belonged to the target organism and not a contaminant. Sequences were edited using Sequencher v. 4.2.2 (Gene Codes Corporation). Sequences were aligned with MAFFT v. 7.017 (Katoh et al., 2002) using the MAFFT plug-in of Geneious v. 6.1.5 (Drummond et al., 2010) using default settings. The multiple sequence alignment of nrITS sequences was partitioned into ITS1, 5.8S, and ITS2 and analyzed under maximum likelihood and Bayesian frameworks. The maximum likelihood search was performed in RAxML v. 7.2.6 (Stamatakis, 2006) using the generalized time-reversible (GTR) model of sequence evolution with node support assessed

with 500 bootstrapped pseudoreplicate datasets. For the Bayesian analysis, the appropriate model of sequence evolution was selected for each data partition using jModelTest v. 2.1.3 (Guindon & Gascuel, 2003; Darriba et al., 2012). Models selected using the Akaike Information Criterion (AIC) were $GTR + \Gamma + I$ for ITS1 and ITS2, and HKY + Γ + I for the 5.8S region. Bayesian analysis was conducted using MrBayes v. 3.1.2 (Ronquist & Huelsenbeck, 2003) via the CIPRES Science Gateway (Miller et al., 2010). The Bayesian analysis consisted of 4 parallel runs using one heated (temp=0.5) and three cold chains per run for 30,000,000 generations sampling every 1,000 generations. All parameters of sequence evolution models were unlinked across partitions. Convergence of each run was assessed by ensuring that potential scale reduction factors (PSRF) reported in MrBayes were close to 1 and effective sample size (ESS) values were greater than 200 in Tracer v. 1.5 (Rambaut & Drummond, 2007). A Bayesian majority-rule consensus tree was produced from the stationary distribution after discarding the first 25% of the sampled trees as burn-in. We produced a tree summarizing both analyses by mapping posterior probabilities and bootstrap proportions onto the Bayesian consensus tree using SumLabels v. 1.0.0, part of the DendroPy Phylogenetic Computing Library v. 3.12.0 (Sukumaran & Holder, 2010). The tree was inspected and edited using Fig Tree v. 1.3.1 (Rambaut, 2006-2009) and prepared for publication using Adobe® Illustrator® CS4.

FIG. 2. Outgroups and C_3 grade. Bayesian majority-rule consensus tree based on maximum likelihood and Bayesian analyses of nuclear ITS sequences of *Cyperus*. Nodes with bootstrap proportions ≥ 75 or posterior probabilities ≥ 0.85 are labeled with an asterisk (*). Taxon name font color/style for ingroup taxa is according to native geographic distribution. Old World taxa are in gray font, pantropical taxa are in regular black font, and New World taxa are in bold black font. Native ranges of taxa were determined by consulting Schippers et al. (1995), Tucker (2002), Tucker et al. (2002), Lunkai et al. (2010), and eMonocot Team (2013). Lettered clades are discussed and exact support values are reported in text.

Results

Sequence length in our matrix ranged from 539 bp to 624 bp. Including gaps, the aligned matrix had 685 characters. Sequencing was straightforward, in that sequences required minimal use of ambiguous character states. Of the 74,665 cells in the matrix, $39 (\sim 0.5\%)$ were occupied by ambiguous character states. The phylogenetic tree resulting from our analysis is presented in Figs. 2 and 3. Ingroup taxa compose a well-supported clade (bootstrap proportion (bsp)/posterior probability (pp) = 75/1.00). Ingroup taxa possessing C_3 photosynthesis form a grade (Fig. 2) that is basal to a strongly-supported (bsp/ pp = 94/1.00) C₄ clade (Fig. 3). Resolution is better and branch lengths are longer in the C₃ basal grade (Fig. 2). Resolution at deep to intermediate levels within the C_4 clade is poor as evidenced by several polytomies (Fig. 3). The pantropical Cyperus cuspidatus Kunth is sister to the remainder of the C_4 clade (Fig. 3), the same phylogenetic position as reported in other studies (Muasya et al., 2002; Larridon et al., 2011a, 2013).

Kvllinga, Lipocarpha, Oxycaryum, Pycreus, and Queenslandiela are embedded within *Cyperus* (Figs. 2, 3). *Kyllinga* is monophyletic with strong support (Fig. 3; bsp/pp = 99/1.00). *Lipocarpha* is paraphyletic in our ITS tree (Fig. 3) and in the study of Larridon et al. (2013) where it fell within a clade also containing Ascolepis and Volkiella (not sampled here). Lipocarpha (Fig. 1F) has generally not been included within Cyperus, but consistently falls within it in molecular studies (Muasya et al., 1998; Muasya et al., 2001; Muasya et al., 2002; Simpson et al., 2007; Muasya et al., 2009a, b; Larridon et al., 2013). Prior to the availability of molecular evidence, Koyama (1961) was apparently the only author to have treated *Lipocarpha*, which has highly reduced spikelets, within Cyperus.

Oxycaryum cubense (Poepp. & Kunth) Palla is sister to a clade containing Cyperus

FIG. 3. C_4 clade. Bayesian majority-rule consensus tree based on maximum likelihood and Bayesian analyses of nuclear ITS sequences of *Cyperus* (continued).

dichrostachyus Hochst. ex A. Rich., C. difformis L., and C. fuscus L. which are members of section Fusci (Kunth) C.B. Clarke (Kükenthal, 1935–1936) (Clade C, Fig. 2). Clade C is well-supported (bsp/pp = 94/1.00). Pycreus is polyphyletic, with representatives associated with three widely separated clades (Fig. 3). Pycreus was also polyphyletic in the analysis of Larridon et al. (2013). Queenslandiella is monotypic, represented by Q. hyalina (Vahl) Ballard (= Cyperus hyalinus Vahl). The phylogenetic position of Q. hyalina is not well resolved in our ITS tree (Fig. 3).

Within the C₃ grade (Fig. 2), Clade A (bsp/ pp = 93/1.00) consists almost entirely of members of section *Haspani* (Kunth) C.B. Clarke, with the lone exception being *C*. *flaccidus* R. Br. of section *Graciles* Benth. (Kük.). *Cyperus isocladus* Kunth is treated as a synonym of *C. prolifer* Lam. by Govaerts and Simpson (2007), and our results support this treatment. (Clade A, Fig. 2). Clade B (bsp/pp = 100/1.00) consists of members of section *Luzuloidei* (Kunth) C. B. Clarke. This clade will be discussed more fully below.

Within the C_4 clade (Fig. 3), clades D - H have strong support. For Clade D, bsp/pp = 86/0.99. Several taxonomic sections are represented in Clade E (bsp/pp = 83/1.00), which includes species with pantropical distributions such as Cyperus articulatus L., C. corymbosus Rottb., and C. digitatus Roxb., several strictly Old World taxa such as C. nipponicus Franch. & Sav., C. pacificus (Ohwi) Ohwi, C. papyrus, and C. rotundus, and the New Word Cyperus erythrorhizos Muhl. The majority of taxa in Clade F (bsp/pp = 95/1.00) are native to North America, with the exception of Cyperus insularis Heenan & de Lange and C. ustulatus A. Rich. which are both endemic to New Zealand, and the east Asian C. amuricus Maxim. Members of Clade G (bsp/pp = 67/0.93) are all Old World natives. Clade H (bsp/pp = 82/0.99) comprises two sub-clades. The sub-clade containing Cyperus macrocephalus Liebm. and C. odoratus L. corresponds to subgenus Diclidium (Schrader ex Nees) C. B. Clarke. Support for the Cyperus odoratus-C. macrocephalus clade is strong (bsp/pp =83/1.00). The other sub-clade within Clade H has moderately strong support (bsp/pp =81/0.81) and shows a close relationship

between *Cyperus cephalanthus* Torr. & Hook. and *C. rigens* J. Presl & C. Presl, members of the *C. rigens* complex that also includes *C. impolitus* Kunth, and several other primarily South American taxa (Pedersen, 1972).

Discussion

Our results support an expanded concept of Cyperus and resolve a C3/C4 split, adding support to the work of other researchers (Muasya et al., 1998, 2002, 2009a, b; Simpson et al., 2007; Larridon et al., 2011a, 2013). Short branch lengths and poor resolution, especially at intermediate depths, are evident in the C₄ clade in our phylogenetic hypothesis. Resolution is improved closer to tips of the tree (Fig. 3). Similar results were reported by other workers (Larridon et al., 2013). Our limited taxon sampling does not allow us to rigorously evaluate sectional taxonomy and biogeography, but does represent an important step toward that end. There are apparent relationships among several ingroup taxa at smaller scales that are worthy of discussion.

In the C_3 grade, section Luzuloidei is monophyletic (Clade B, Fig. 2). This group was also reported by Larridon et al. (2011a) to be monophyletic in their Bayesian and maximum likelihood analyses of the chloroplast markers rpl32-trnL and trnH-psbA and nuclear ETS1. A synapomorphy uniting the members of section Luzuloidei represented in our study is the presence of basally two-keeled floral scales (Denton 1978). Denton's (1978) view that her circumscription of the Luzulae group, consisting of the New World representatives of section Luzuloidei sensu Kükenthal, is natural is supported by our results and those of Larridon et al. (2011a). Our ITS phylogeny, which includes eight of the 10 species treated by Denton (1978) in a phenetic study involving clustering and discriminant analysis, supports her conclusion that C. ochraceus Vahl and C. distinctus Steud. are closely related. However, our analysis did not confirm close relationships between C. luzulae (L.) Rottb. ex Retz. and C. pseudovegetus Steud. and between C. acuminatus Torr. & Hook. and C. eragrostis Lam., which were supported by Denton's (1978) phenetic data.

Cyperus subgenus *Diclidium* (formerly *Torulinium* (Desv.) Kük.) is represented in our study by *C. macrocephalus* and two

samples of C. odoratus. These species are considered conspecific by Tucker (1984). Tucker et al. (2002) report eight species in this group. Members of subgenus Diclidium are diagnosed by having rachillas that disarticulate at the base of each floral scale, the spikelets thus splitting into one-fruited segments (Tucker et al., 2002). In our analysis, subgenus Diclidium is monophyletic, highly derived, and apparently has some very close relatives not possessing the spikelet-shattering characteristic of Diclidium. Provided that greater taxon sampling continues to support the monophyly of Diclidium, a reduction in rank from subgenus to section may be appropriate.

Our ITS tree provides preliminary evidence that the C_4 section Thunbergiani (C. B. Clarke) Kük. is artificial, because its representatives in our study, Cyperus cephalanthus, C. insularis, C. planifolius Rich., C. rigens, and C. ustulatus, do not form a clade. Section Thunbergiani is diagnosed by a robust, usually tall, habit, biennial or perennial lifespan, long leaves and bracts, numerous spikelets per spike, and floral scales that are often reddish (Clarke, 1897). Morphologically, the group seems well-defined, but our results suggest it is artificial. Suspicious about the position of Cyperus planifolius, we repeated DNA extraction and amplification from silica dried material and directly from the voucher specimen and recovered identical sequences.

In addition to members of section Thunbergiani, the strongly supported Clade F (Fig. 3) comprises members of several other mariscoid sections, fide Kükenthal (1935-1936), including Laxiglumi (C. B. Clarke) Kük., Strigosi Kük., Tetragoni Kük., and Umbellati (C. B. Clarke) Kük., suggesting their artificial nature as suspected by Carter and Jones (1997) based upon morphological incongruities. Members of Clade F are mostly New World species centered in North America with two taxa, Cyperus thyrsiflorus Jungh. and C. croceus Vahl, also extending into South America (Tucker et al., 2002). The presence of New Zealand endemics Cyperus ustulatus and C. insularis and the Asian C. amuricus is of interest. If these taxa are truly closely related to the American taxa in Clade F, long distance dispersal could explain this

situation, as sedges, with their small fruits, can be dispersed by animals as well as on ocean currents (Kern 1974).

Cyperus plukenetii Fern. and *C. hystricinus* Fern. are remarkable among sedges of the southeastern United States in their adaptation to excessively well-drained sandy soils, and Clade F (Fig. 3) suggests a close relationship between these taxa previously supported only by morphological and ecological evidence (Carter, 1984). Other species in Clade F that are adapted to dry, sandy soils include *C. grayoides* Mohlenbr., *C. lupulinus* (Spreng.) Marcks, and *C. filiculmis* Vahl, all members of section *Laxiglumi*.

Clade F (Fig. 3) shows a close, but not sister, relationship between Cyperus echinatus (L.) Alph. Wood "var. sphaericus" [=C. ovularis (Michx.) Torr. var. sphaericus Boeck.] and the typical expression of C. echinatus. Cyperus echinatus "var. sphaericus" is sister to C. filiculmis in our analysis, and their ITS sequences are actually identical. In the southeastern United States, Cyperus echinatus "var. sphaericus" and C. filiculmis are characteristic species of sandy soils in fire-driven *Pinus palustris* Mill. woodlands. The latter usually inhabits slightly drier, sandier sites than the former. Conversely, typical C. echinatus is more of a weedy plant generally associated with mesic, finer-textured soils. In our study, C. echinatus "var. sphaericus" and C. filiculmis were collected from different sites on different dates, and PCR amplification was conducted in different batches on different dates, so cross-contamination does not seem a likely explanation of these taxa having identical ITS sequences. Additional sequencing of the ITS region in all three taxa in this clade will be carried out to determine consistency of sequences. It is possible that C. echinatus "var. sphaericus" is a result of hybridization between typical C. echinatus and C. filiculmis. If the hybridization hypothesis is correct, PCR could have amplified an ITS copy of *C. filiculmis* in material of "var. *sphaericus*". The use of bacterial cloning when working with ITS, as done by Siripun and Schilling (2006) in Eupatorium L. (Asteraceae), plus sequencing markers from other genomes, would be helpful in elucidating the true identity and

proper taxonomic placement of "var. *sphaer-icus*".

Cyperus ovatus Baldwin has an essentially Floridian distribution, extending westward along the Gulf coast into Louisiana and northward along the Atlantic coast to North Carolina. It was segregated by Small (1933), albeit under different names (Cyperus pollardii Britton, C. winkleri Britton & Small). Subsequently it was maintained as a species by Carter (1984) and Tucker et al. (2002). Presumably because of superficial similarity in gross features of inflorescence form, some workers (e.g., Godfrey & Wooten, 1979; Wunderlin & Hansen, 2003) have treated C. ovatus as a synonym of C. retrorsus Chapm. despite a number of differences between the two taxa, including floral scale posture (ascending vs. appressed) and color (yellowstramineous vs. reddish brown), achene shape (elliptic vs. oblong), and inflorescence bract posture (divaricate vs. ascending). The position of C. ovatus vis-à-vis C. retrorsus in Clade F supports its treatment as a distinct taxon at the rank of species.

The poor resolution of deeper nodes in the C_4 *Cyperus* clade has been referred to as a hard polytomy (Reynders et al., 2010; Larridon et al., 2013). Larridon et al. (2013) regard C_4 photosynthesis as a key innovation which allowed invasion of hot, dry, high-irradiance sites, and sites experiencing fire or chemical stress, leading to rapid diversification. Perhaps the C_4 clade can be better resolved using large data sets generated by next generation sequencing technology, such as 454 sequencing.

We plan to sample putative relatives of members of Clade F which have more westerly distributions such as Cyperus hermaphroditus (Jacq.) Standley, C. pseudothyrsiflorus (Kük.) J. R. Carter & S.D. Jones, C. lentiginosus Millsp. & Chase, C. floribundus (Kük.) J. R. Carter & S. D. Jones, C. manimae Kunth, C. hypopitys G. C. Tucker, to see if Clade F continues to expand. Many members of Clade F grow in drier habitats. We plan to sample additional species of dry sandy soils such as Cyperus schweinitzii Torr., C. houghtonii Torr., and C. gravi Torr., which are members of section Laxiglumi, which is represented by several taxa in Clade F. In all future research,

additional markers from nuclear and plastid regions will be employed to increase the confidence of phylogenetic hypotheses.

Acknowledgments

Field work for this research was supported by Coypu Foundation and Louisiana Department of Wildlife and Fisheries. The senior author would like to thank David Rosen for assistance and companionship in the field while working in Texas. He would also like to thank Gabriella Lopez and Ricardo Vanni of CTES for hosting him while in Corrientes, Argentina. Without them, his field work in Argentina would not have been possible. Randy Mears assisted R.C. with fieldwork in southern Florida and provided us with material of Cyperus planifolius. Jerry Abbott and Kurt Neubig of FLAS kindly provided silicadried material of several taxa for this study. Vinson Doyle provided invaluable help with the Bayesian analysis and with SumLabels and his assistance is greatly appreciated. Patti Hardouin assisted generously with preparation of figures. Maria Reid proof read the manuscript. Fred Sheldon reviewed an early version of this manuscript, and we appreciate his input. Isabel Larridon and Muthama Muasya provided helpful reviews that greatly improved this manuscript. Janelle Burke worked closely with C.S.R. to complete preparation of this manuscript for publication, and her help and patience is greatly appreciated.

Literature Cited

- Altschul, S. F., W. Gish, W. Miller, E. W. Meyers & D. J. Lipman. 1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403–410.
- Besnard, G., A. M. Muasya, F. Russier, E. H. Roalson, N. Salmin & P. A. Christin. 2009. Phylogenomics of C₄ photosynthesis in sedges (Cyperaceae): multiple appearances and genetic convergence. Molecular Biology and Evolution 26: 1909–1919.
- Bryson, C. T. & R. Carter. 2008. The significance of Cyperaceae as weeds. *In:* R.F.C. Naczi and B.A. Ford (eds.), Sedges: uses, diversity, and systematics of the Cyperaceae. Monographs in Systematic Botany from the Missouri Botanical Garden 108: 15–101.
- Carter, J. R. 1984. A systematic study of the new world species of section *Umbellati* of Cyperus. Ph.D. dissertation. Vanderbilt University. Nashville, Tennessee.

& S.D. Jones. 1997. Notes on the *Cyperus* retroflexus complex (Cyperaceae) with three nomenclatural proposals. Rhodora 99: 319–334.

- Clarke, C. B. 1897. Cyperaceae. *In:* Thiselton-Dyer, W.T. (ed.), Flora Capensis, 7: 149–192. London, Reeve.
- Darriba, D., G. L. Taboada, R. Doallo & D. Posada. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9(8): 772.
- Denton, M.F. 1978. A taxonomic treatment of the *Luzulae* group of *Cyperus*. Contributions of the University of Michigan Herbarium 11(4): 197–271.
- Drummond, A. J., B. Ashton, M. Cheung, J. Heled, M. Kearse, R. Moir, S. Stones-Havas, T. Thierer & A. Wilson. 2010. Geneious v 6.1.5. Website: http:// www.geneious.com.
- eMonocot Team. 2013. eMonocot Cyperaceae. Website: http://cyperaceae.e-monocot.org [accessed 23 September 2013].
- Godfrey, R. K. & J. W. Wooten. 1979. Aquatic and wetland plants of the southeastern United States: monocotyledons. University of Georgia Press, Athens.
- **Goetghebeur, P.** 1989. Studies in Cyperaceae 9. Problems in the lectotypification and infrageneric taxonomy of *Cyperus* L. Bulletin de la Société Royale Botanique de Belgique 122: 103–114.
 - . 1998. Cyperaceae. In: K. Kubitzki, H. Huber, P. J. Rudall, P. S. Stevens and T. Stützel (eds.), The families and genera of vascular plants, 4: 141–190. Springer-Verlag, Berlin.
- Govaerts, R. & D. A. Simpson. 2007. World checklist of Cyperaceae (sedges). Kew Publishing, Royal Botanical Gardens, Kew, United Kingdom.
- Guindon, S. & O. Gascuel. 2003. A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology 52: 696– 704.
- Haines, R. W. & K. A. Lye. 1983. The sedges and rushes of east Africa. East African Natural History Society, Nairobi.
- Holm, L. G., D. L. Plucknett, J. V. Pancho & J. P. Herberger. 1977. The world's worst weeds: distribution and biology. University Press of Hawaii, Honolulu.
- Katoh, K., K. Misawa, K. Kuma & T. Miyata. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30(14): 3059–3066.
- Kern, J. H. 1974. Cyperaceae. In: C.G.G.J. van Steenis (ed.), Flora Malesiana, ser. I, 7(3): 435–753. Noordhoff, Leyden.
- **Koyama, T.** 1961. Classification of the family Cyperaceae (3). Quarterly Journal of the Taiwan Museum 14: 159–194.
- Kükenthal, G. 1935-1936. Cyperaceae-Scirpoideae. *In:* A. Engler (ed.), Das Pflanzenreich, IV, 20 (Heft 101): 1–671.
- Larridon, I., K. Bauters, M. Reynders, W. Huygh, A. M. Muasya, D. A. Simpson & P. Goetghebeur. 2013. Towards a new classification of the giant paraphyletic genus *Cyperus* (Cyperaceae): phylogenetic relationships and generic delimitation in C₄ *Cyperus*. Botanical Journal of the Linnean Society 172(1): 106–126.

- —, M. Reynders, W. Huygh, K. Bauters, K. Van de Putte, A. M. Muasya, P. Boeckx, D. A. Simpson, A. Vrijdaghs & P. Goetghebeur. 2011a. Affinities in C3 *Cyperus* lineages (Cyperaceae) revealed using molecular phylogenetic data and carbon isotope analysis. Botanical Journal of the Linneaen Society 167: 19–46.
- , , , , , , , , , , , , , , , A. Vrijdaghs, O. Leroux, A. M. Muasya, D. A. Simpson & P. Goetghebeur. 2011b. Taxonomic changes in C₃ *Cyperus* (Cyperaceae) supported by molecular data, morphology, embryography, ontogeny and anatomy. Plant Ecology and Evolution 144(3): 327–356.
- Lunkai, D., G. C. Tucker & D. A. Simpson. 2010. *Cyperus* Linnaeus. *In:* W. Zhengyi, P.H. Raven, and H. Deyuan (eds). Flora of China, 23: 219–241. Missouri Botanical Garden Press, St. Louis.
- Miller, M. A., W. Pfeiffer & T. Schwartz. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments (GCE) Workshop, pp 1–8, 14 November 2010, New Orleans, Louisiana.
- Muasya, A. M., D. A. Simpson & M. W. Chase. 2001. Generic relationships and character evolution on *Cyperus* s.l. (Cyperaceae). Systematics and Geography of Plants 71: 539–544.
- , _____& ____. 2002. Phylogenetic relationships in *Cyperus* L. s.l. (Cyperaceae) inferred from plastid DNA sequence data. Botanical Journal of the Linneaen Society 138: 145–153.
- **....,, & A. Culham.** 1998. An assessment of suprageneric phylogeny in Cyperaceae using *rbc*L DNA sequences. Plant Systematics and Evolution 211: 257–271.
- ____, ___, G. A. Verboom, P. Goetghebeur, R. F. C. Naczi, M. W. Chase & E. Smets. 2009a. Phylogeny of Cyperaceae based on DNA sequence data: current progress and future prospects. Botanical Review 75: 2–21.
- ——, A. Vrijdaghs, D. A. Simpson, M. W. Chase, P. Goetghebeur & E. Smets. 2009b. What is a genus in Cypereae?: phylogeny, character homology assessment and generic circumscription in Cypereae. Botanical Review 75: 52–66.
- Pedersen, T. M. 1972. Cyperus laetus Presl and Cyperus rigens Presl, two badly understood South American sedges, with notes on some related species. Darwiniana 17: 527–547.
- Rambaut, A. 2006-2009. Fig Tree. Tree Figure Drawing Tool Ver. 1.3.1. Institute of Evolutionary Biology, University of Edinburgh.
- **& A. J. Drummond.** 2007. Tracer v. 1.5. Website: http://beast.bio.ed.ac.uk/Tracer.
- Reynders, M., A. Vrijdaghs, I. Larridon, W. Huygh, O. Leroux, A. M. Muasya & P. Goetghebeur. 2010. The Cypereae radiation: *Pycreus* highlighted (Cyperaceae). Scripta Botanica Belgica 46: 445.
- Rikli, M. 1895. Beiträge zur vergleichenden anatomie der Cyperaceen mit besonderer berücksichtigung der inneren parenchymscheide. Jahrbücher für Wissenschaftliche Botanik 27: 485–580.
- Ronquist, F. & J. P. Huelsenbeck. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.

- Schippers, P., S. J. T. Borg & J. J. Bos. 1995. A revision of the infraspecific taxonomy of *Cyperus esculentus* (yellow nutsedge) with an experimentally evaluated character set. Systematic Botany 20(4): 461–481.
- Simpson, D. A., A. M. Muasya, M. V. Alves, J. J. Bruhl, S. Dhooge, M. W. Chase, C. A. Furness, K. Ghamkhar, P. Goetghebeur, T. R. Hodkinson, A. D. Marchant, A. A. Reznicek, R. Nieuwborg, E. H. Roalson, E. Smets, J. R. Starr, W. W. Thomas, K. L. Wilson & X. Zhang. 2007. Phylogeny of Cyperaceae based on DNA sequence data a new rbcL analysis. Aliso 23: 72–83.
- Siripun, K.C. & E. E. Schilling. 2006. Molecular confirmation of the hybrid origin of *Eupatorium* godfreyanum (Asteraceae). American Journal of Botany 93(2): 319–325.
- Small, J. K. 1933. Manual of the southeastern flora. University of North Carolina Press, Chapel Hill.
- **Stamatakis, A.** 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21): 2688–2690.

- Sukumaran J. & M. T. Holder. 2010. DendroPy: A Python library for phylogenetic computing. Bioinformatics. 26: 1569–1571.
- Sun, Y., D. Z. Skinner, G. H. Liang & S. H. Hulbert. 1994. Phylogenetic analysis of *Sorghum* and related taxa using internal transcribed spacer of nuclear ribosomal DNA. Theoretical and Applied Genetics 89: 26–32.
- Tucker, G. C. 1984. Taxonomic notes on two common neotropical species of *Cyperus* (Cyperaceae). Sida 10(4): 298–307.

2002. Kyllinga Rottbøll. In: Flora of North America Editorial Committee (eds.), Flora of North America North of Mexico, 23: 193–194. Oxford University Press, New York.

- Tucker, G. C., B. G. Marcks & J. R. Carter. 2002. *Cyperus* Linnaeus. *In*: Flora of North America Editorial Committee (eds.), Flora of North America North of Mexico, 23: 141–191. Oxford University Press, New York.
- Wunderlin, R. P. & B. F. Hansen. 2003. Guide to the vascular plants of Florida, 2nd ed. University Press of Florida, Gainesville.